The reaction occurs in a similar way as magnesium does, but much less vigorous. Strong heating is required to make iron powder burn in oxygen. The reaction gives out a yellow showery sparks and produces a black solid. iron reacts with dilute hydrocloric acid to give iron chloride and hydrogen gas.
Answer:
6.25% of the original amount
Explanation:
half-life means that half is gone for every certain period of time. Because the half life is 1 month, only half of the 'radionulide' is left every month.
after 1 month= 50%
after 2 months= 25%
after 3 months= 12.5%
after 4 months= 6.25%
The mass of the water in the container given the data from the question is 22.5 g
<h3>Data obtained from the question</h3>
- Mass of cold lead (M) = 54.3 g
- Temperature of lead (T) = 384.4 K
- Temperature of water (Tᵥᵥ) = 291.2 K
- Equilibrium temperature (Tₑ) = 297.6 K
- Specific heat capacity of the water (Cᵥᵥ) = 4.184 J/gK
- Specific heat capacity of lead (C) = 0.128 J/gK
- Mass of water (Mᵥᵥ) = ?
<h3>How to determine the mass of water </h3>
Heat loss = Heat gain
MC(T – Tₑ) = MᵥᵥCᵥᵥ(Tₑ – Tᵥᵥ)
54.3 × 0.128 (384.4 – 297.6) = Mᵥᵥ × 4.184(297.6 – 291.2)
6.9504 × 86.8 = Mᵥᵥ × 4.184 × 6.4
Divide both side by 4.184 × 6.4
Mᵥᵥ = (6.9504 × 86.8) / (4.184 × 6.4)
Mᵥᵥ = 22.5 g
Learn more about heat transfer:
brainly.com/question/6363778
#SPJ1
1077kjmol¹- + 498/2kjmol¹- + enthalpy=805*2kjmol¹- =1610-1319=291kjmol¹-
Answer is: <span>B) -50.2 kJ.
Balanced chemical reaction: </span>N₂(g) + 3H₂(g) → 2NH₃(g) ΔH = -<span>100.4 kJ.
This is exothermic reaction, because heat is released and energy is include as product of chemical reaction.
Make proportion, two moles of ammonia released 100.4 kJ of heat, then one mole of ammonia released:
2 mol(NH</span>₃) : (-100.4 kJ) = 1 mol : ΔH.
ΔH = -50.2 kJ; <span>heat released per mole of NH</span>₃.