Answer: See below
Explanation:
1. a) 0.15 moles calcium carbonate (15g/100g/mole)
b) 0.15 moles CaO (molar ratio of CaO to CaCO3 is 1:1)
c) 8.4 grams CaO (0.15 moles)*(56 grams/mole)
2. a) 0.274 moles Na2O (17g/62 grams/mole)
b) 46.6 grams NaNO3 (2 moles NaNO3/1 mole Na2O)*(0.274 moles Na2O)*(85 g/mole NaNO3)
Answer:
The reaction would shift toward the reactants
When the reaction reach equilibrium the partial pressure of NH3 will be greater than 1atm
Explanation:
For the reaction:
2NH₃(g) ⇄ N₂(g) + 3H₂(g)
Where K is defined as:

As initial pressures of all 3 gases is 1.0atm, reaction quotient, Q, is:

As Q > K, <em>the reaction will produce more NH₃ until Q = K consuming N₂ and H₂.</em>
Thus, there are true:
<h3>The reaction would shift toward the reactants</h3><h3>When the reaction reach equilibrium the partial pressure of NH3 will be greater than 1atm</h3>
<em />
Answer:
it's subduction
Explanation:
i know this because I just do lol
You multiply 32 by 2, since there are two hydrogens in every water molecule.
Hello!
The half-life is the time of half-disintegration, it is the time in which half of the atoms of an isotope disintegrate.
We have the following data:
mo (initial mass) = 53.3 mg
m (final mass after time T) = ? (in mg)
x (number of periods elapsed) = ?
P (Half-life) = 10.0 minutes
T (Elapsed time for sample reduction) = 25.9 minutes
Let's find the number of periods elapsed (x), let us see:






Now, let's find the final mass (m) of this isotope after the elapsed time, let's see:




I Hope this helps, greetings ... DexteR! =)