Answer:
Vx = 35.31 [km/h]
Vy = 18.77 [km/h]
Explanation:
In order to solve this problem, we must decompose the velocity component by means of the angle of 28° using the cosine function of the angle.
![v_{x} = 40*cos(28)\\V_{x} = 35.31 [km/h]](https://tex.z-dn.net/?f=v_%7Bx%7D%20%3D%2040%2Acos%2828%29%5C%5CV_%7Bx%7D%20%3D%2035.31%20%5Bkm%2Fh%5D)
In order to find the vertical component, we must use the sine function of the angle.
![V_{y}=40*sin(28)\\V_{y} = 18.77 [km/h]](https://tex.z-dn.net/?f=V_%7By%7D%3D40%2Asin%2828%29%5C%5CV_%7By%7D%20%3D%2018.77%20%5Bkm%2Fh%5D)
Answer:
a. A = 0.735 m
b. T = 0.73 s
c. ΔE = 120 J decrease
d. The missing energy has turned into interned energy in the completely inelastic collision
Explanation:
a.
4 kg * 10 m /s + 6 kg * 0 m/s = 10 kg* vmax
vmax = 4.0 m/s
¹/₂ * m * v²max = ¹/₂ * k * A²
m * v² = k * A² ⇒ 10 kg * 4 m/s = 100 N/m * A²
A = √1.6 m ² = 1.26 m
At = 2.0 m - 1.26 m = 0.735 m
b.
T = 2π * √m / k ⇒ T = 2π * √4.0 kg / 100 N/m = 1.26 s
T = 2π *√ 10 / 100 *s² = 1.99 s
T = 1.99 s -1.26 s = 0.73 s
c.
E = ¹/₂ * m * v²max =
E₁ = ¹/₂ * 4.0 kg * 10² m/s = 200 J
E₂ = ¹/₂ * 10 * 4² = 80 J
200 J - 80 J = 120 J decrease
d.
The missing energy has turned into interned energy in the completely inelastic collision
Hope this helps
Ps- U can pick between these two pictures
Please mark as brainliest
We will solve this question using the second law of motion which states that force is directly equal to the product of mass and acceleration.

Where,
- F is force
- m is mass
- a is acceleration
In our case,
- F = ?
- m = 2500 kg
- a = 20m/s

<em>Thus, The force of 50000 Newton is required to accelerate a car of 2500 kg...~</em>