Explanation:
Monosaccharides are the elementary form of the sugar and most basic units of the carbohydrates. These sugars cannot be further hydrolyzed to form the simpler chemical compounds. The general formula is
. Example: Glucose and fructose.
Disaccharide is sugar which is formed when the two monosaccharides are joined by the glycosidic linkage. Disaccharides are soluble in the water. Examples: sucrose and lactose.
Oligosaccharide is the saccharide polymer which contains small number of the monosaccharides. They can have many functions like the cell recognition and the cell binding. Example: glycolipids which have role in immune response.
Polysaccharides are the polymeric carbohydrate molecules which are composed of the long chains of the monosaccharide units that are bound together by the glycosidic linkages which on the hydrolysis give constituent monosaccharides or th eoligosaccharides. Example: Starch.
Glycoconjugates is general classification for the carbohydrates which are covalently linked with the other chemical species such as peptides, proteins, saccharides and lipids. Example: Blood proteins
Answer:
Q = -18118.5KJ
W = -18118.5KJ
∆U = 0
∆H = 0
∆S = -60.80KJ/KgK
Explanation:
W = RTln(P1/P2)
P1 = 1bar = 100KN/m^2, P2 = 1500bar = 1500×100 = 150000KN/m^2, T = 23°C = 23 + 273K = 298K
W = 8.314×298ln(100/150000) = 8.314×298×-7.313 = -18118.5KJ ( work is negative because the isothermal process involves compression)
∆U = Cv(T2 - T1)
For an isothermal process, temperature is constant, so T2 = T1
∆U = Cv(T1 - T1) = Cv × 0 = 0
Q = ∆U + W = 0 + (-18118.5) = 0 - 18118.5 = -18118.5KJ
∆H = Cp(T2 - T1)
T2 = T1
∆H = Cp(T1 - T1) = Cp × 0 = 0
∆S = Q/T
Mass of water = 1kg
Heat transferred (Q) per kilogram of water = -18118.5KJ/Kg
∆S = (-18118.5KJ/Kg)/298K = -60.80KJ/KgK
Answer:
minimizing the use of cars can help save the ozone layer by Minimizing the amount of gasoline which damages the ozone layer.
therefore the ozone layer is preserved.
have a nice day.
<span>
Mn²⁺ + 4H2O -----> MnO4⁻ + 8H⁺ +5e⁻ /*2
<span>NaBiO3 +6H⁺ +2e⁻ -----> Bi³⁺ + Na⁺ + 3H2O /*5
</span>2Mn²⁺ + 5 NaBiO3+8H2O+30H⁺ ---> 2MnO4⁻ +5Bi³⁺ + 5Na⁺ +16H⁺ +15H2O
</span>2Mn²⁺ + 5 NaBiO3+14H⁺ ---> 2MnO4⁻ +5Bi³⁺ + 5Na⁺ +7H2O
There are 7 water molecules in this reaction.