Answer:
From the relation above we can conclude that the as the distance between the two plate increases the electric field strength decreases
Explanation:
I cannot find any attached photo, but we can proceed anyways theoretically.
The electric field strength (E) at any point in an electric field is the force experienced by a unit positive charge (Q) at that point
i.e

But the force F

But the electric field intensity due to a point charge Q at a distance r meters away is given by

<em>From the relation above we can conclude that the as the distance between the two plate increases the electric field strength decreases</em>
The answer is both.
For kinetic energy:
KE = 1/2*m*v^2 = 0.5*20,000 grams*5 = 50,000 J
For gravitational potential energy:
Pe = mgh = 20,000 grams*9.81 m/s^2*2 m = 392.2 J
-35 is the ans.wer.hope this hels
In BPC
tan\theta =a/b = 3/4
\theta = tan^-1(0.75)
\theta = 36.87 deg
BP = sqrt(a^2 + b^2) = sqrt((3)^2 + (4)^2) = 5 m
Eb = k Q/BP^2 = (9 x 10^9) (16 x 10^-9)/5^2 = 5.76 N/C
Ea = k Q/AP^2 = (9 x 10^9) (16 x 10^-9)/4^2 = 9 N/C
Ec = k Q/CP^2 = (9 x 10^9) (16 x 10^-9)/3^2 = 16 N/C
Net electric field along X-direction is given as
Ex = Ea + Eb Cos36.87 = (9) + (5.76) Cos36.87 = 13.6 N/C
Net electric field along X-direction is given as
Ey = Ec + Eb Sin36.87 = (16) + (5.76) Sin36.87 = 19.5 N/C
Net electric field is given as
E = sqrt(Ex^2 + Ey^2) = sqrt((13.6)^2 + (19.5)^2) = 23.8 N/C
Well the options r not well described anyways, the answer goes:
1) Foods rich in carb, sugars, proteins...
2) Lack of activity/exercise
3) Not proper use of medicines
4) Imbalanced hormone
5) Dehydration
6) Stress (in some situations)
7) High intake of unhealthy beverages (i.e, juices, alcohol & alike)
And much more
Hope this was helpful :)