Use PV=nRT to solve the equation. You need to solve for n (number of moles). Don’t forget to convert the temperature to kelvins by adding 25+273. Use 0.082057 for R.
Explanation:
local winds are considered breezes while global winds produce mostly storms
Answer:
0.4 M
Explanation:
Molarity is defined as moles of solute, which in your case is sodium hydroxide,
NaOH
, divided by liters of solution.
molarity
=
moles of solute
liters of solution
Notice that the problem provides you with the volume of the solution, but that the volume is expressed in milliliters,
mL
.
Moreover, you don't have the number of moles of sodium hydroxide, you just have the mass in grams. So, your strategy here will be to
determine how many moles of sodium hydroxide you have in that many grams
convert the volume of the solution from milliliters to liters
So, to get the number of moles of solute, use sodium hydroxide's molar mass, which tells you what the mass of one mole of sodium hydroxide is.
7
g
⋅
1 mole NaOH
40.0
g
=
0.175 moles NaOH
The volume of the solution in liters will be
500
mL
⋅
1 L
1000
mL
=
0.5 L
Therefore, the molarity of the solution will be
c
=
n
V
c
=
0.175 moles
0.5 L
=
0.35 M
Rounded to one sig fig, the answer will be
c
=
0.4 M
Explanation:
A chemical substance has the characteristics that it cannot be separated by physical methods. Seawater and milk can be separated by sedimentation, and air has different components depending on other aspects (such as elevation). Only ammonia is a substance. (thus it can have a formula: NH<span>3)</span>
<span>C6H12 = 6x12 + 6x1 = 78.
The equation indicates that 2x78 = 156g benzene will produce 6542kJ.
Using proportions you can then calculate that
x/6542kJ = 7.9g / 156g
x = 331.3kJ = 331300J.
heat = mass x ΔT x 4.18J/g°
ΔT = 331300J / (5691g x 4.18J/g°) = 13.9°
final temp = 21 + 14° = 35°C</span>