Answer:
T = 2010 N
Explanation:
m = mass of the uniform beam = 150 kg
Force of gravity acting on the beam at its center is given as
W = mg
W = 150 x 9.8
W = 1470 N
T = Tension force in the wire
θ = angle made by the wire with the horizontal = 47° deg
L = length of the beam
From the figure,
AC = L
BC = L/2
From the figure, using equilibrium of torque about point C
T (AC) Sin47 = W (BC)
T L Sin47 = W (L/2)
T Sin47 = W/2
T Sin47 = 1470
T = 2010 N
Answer:
<em> B.0</em>
Explanation:
Change in momentum: This is defined as the product of mass and change in velocity of a body. or it can be defined as the product of force and time of a body. The fundamental unit of change in momentum is kg.m/s
Change in momentum = M(V-U)......................... Equation 1
where M = mass of the ball, V = final velocity of the ball, U = initial velocity of the ball.
Let: M = m kg and V = U = v m/s
Substituting these values into equation 1
Change in momentum = m(v-v)
Change in momentum = m(0)
Change in momentum = 0 kg.m/s
<em>Therefore the momentum of the ball has not changed.</em>
<em>The right option is B.0</em>
Answer:
Fc = 89.67N
Explanation:
Since the rope is unstretchable, the total length will always be 34m.
From the attached diagram, you can see that we can calculate the new separation distance from the tree and the stucked car H as follows:
L1+L2=34m
Replacing this value in the previous equation:
Solving for H:

We can now, calculate the angle between L1 and the 2m segment:

If we make a sum of forces in the midpoint of the rope we get:
where T is the tension on the rope and F is the exerted force of 87N.
Solving for T, we get the tension on the rope which is equal to the force exerted on the car:

Answer:
0.6 m
Explanation:
When a spring is compressed it stores potential energy. This energy is:
Ep = 1/2 * k * x^2
Being x the distance it compressed/stretched.
When the spring bounces the ice cube back it will transfer that energy to the cube, it will raise up the slope, reaching a high point where it will have a speed of zero and a potential energy equal to what the spring gave it.
The potential energy of the ice cube is:
Ep = m * g * h
This is vertical height and is related to the distance up the slope by:
sin(a) = h/d
h = sin(a) * d
Replacing:
Ep = m * g * sin(a) * d
Equating both potential energies:
1/2 * k * x^2 = m * g * sin(a) * d
d = (1/2 * k * x^2) / (m * g * sin(a))
d= (1/2 * 25 * 0.1^2) / (0.05 * 9.81 * sin(25)) = 0.6 m
Okay, haven't done physics in years, let's see if I remember this.
So Coulomb's Law states that

so if we double the charge on

and double the distance to

we plug these into the equation to find
<span>

</span>
So we see the new force is exactly 1/2 of the old force so your answer should be

if I can remember my physics correctly.