Answer: Option (4) is the correct answer.
Explanation:
Relation between potential energy and charge is as follows.
U = ![\frac{1}{4 \pi \epsilon_{o}}[\frac{q_{1}q_{2}}{r_{12}} + \frac{q_{2}q_{3}}{r_{23}} + \frac{q_{3}q_{1}}{r_{31}}]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B4%20%5Cpi%20%5Cepsilon_%7Bo%7D%7D%5B%5Cfrac%7Bq_%7B1%7Dq_%7B2%7D%7D%7Br_%7B12%7D%7D%20%2B%20%5Cfrac%7Bq_%7B2%7Dq_%7B3%7D%7D%7Br_%7B23%7D%7D%20%2B%20%5Cfrac%7Bq_%7B3%7Dq_%7B1%7D%7D%7Br_%7B31%7D%7D%5D)
As it is given that
,
, and
.
Distance between the charges = 1 cm =
(as 1 cm = 0.01 m)
Hence, putting these given values into the above formula as follows.
U = ![\frac{1}{4 \pi \epsilon_{o}}[\frac{q_{1}q_{2}}{r_{12}} + \frac{q_{2}q_{3}}{r_{23}} + \frac{q_{3}q_{1}}{r_{31}}]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B4%20%5Cpi%20%5Cepsilon_%7Bo%7D%7D%5B%5Cfrac%7Bq_%7B1%7Dq_%7B2%7D%7D%7Br_%7B12%7D%7D%20%2B%20%5Cfrac%7Bq_%7B2%7Dq_%7B3%7D%7D%7Br_%7B23%7D%7D%20%2B%20%5Cfrac%7Bq_%7B3%7Dq_%7B1%7D%7D%7Br_%7B31%7D%7D%5D)
=
= ![9 \times 10^{9} [2 + 6 + 1.5]](https://tex.z-dn.net/?f=9%20%5Ctimes%2010%5E%7B9%7D%20%5B2%20%2B%206%20%2B%201.5%5D)
=
J
= 0.00085 J
Thus, we can conclude that the potential energy of this arrangement, relative to the potential energy for infinite separation, is about 0.00085 J.
<span>Silver oxalate dissociation equation is following:
</span><span>
Ag</span>₂C₂O₄(s) ⇄ 2Ag⁺(aq) + C₂O₄²⁻(aq)
According to reaction follows next stoichiometric ratio:
[Ag⁺] : [C₂O₄²⁻] = 2 : 1
[C₂O₄²⁻] = [Ag⁺] / 2
[C₂O₄²⁻] = (1.7×10⁻⁴)/2 = 8.5×10⁻⁵ M
So, solubility product constants for silver oxalate is:
Ksp = [Ag⁺]² x [C₂O₄²⁻]
Ksp = [1.7×10⁻⁴]² x [8.5×10⁻⁵]
Ksp = 2.46×10⁻¹²
Answer: a mathematical expression describing the probability of finding an electron at various locations; usually represented by the region of space around the nucleus where there is a high probability of finding an electron
Explanation:
Answer:
Mercury doesn't have a fixed shape