An electrode has a negative electrode potential. Which statement is correct regarding the potential energy of an electron at thi
s electrode? A. An electron at this electrode has the same potential energy as it has at a standard hydrogen electrode.
B. An electron at this electrode has a lower potential energy than it has at a standard hydrogen electrode.
C. An electron at this electrode has a higher potential energy than it has at a standard hydrogen electrode.
C. An electron at this electrode has a higher potential energy than it has at a standard hydrogen electrode.
Explanation:
The standard hydrogen electrode (SHE) is used to measure the electrode potential of substances. The standard hydrogen electrode is arbitrarily assigned an electrode potential of zero. Recall that electrode potentials are always measured as reduction potentials in electrochemical systems.
For an electrode that has a negative electrode potential, electrons at this electrode have a higher potential energy compared to electrons at the standard hydrogen electrode. Electrons flow from this electrode to the hydrogen electrode.
On the other hand, a positive electrode potential implies that an electron at this electrode has a lower potential energy than it has at a standard hydrogen electrode. Hence electrons will flow from the standard hydrogen electrode to this electrode.
In this case, when blending we are continuously sliding the substances until we obtain small particles that when do not chemically but physically combine we say they are forming a mixture. Nevertheless, when they chemically combine they form a chemical compound due to the formation of bonds between them.