Explanation:
Loudness of sound is a measure of response of sound to our ear. Loudness of sound is not simply the energy reaching the human ear, but it also tells about the sensitivity of human ear detecting this energy. Loudness of sound is measured in decibel (dB). As energy reaching the ear depends on square of amplitude, loudness of sound depends on various factors namely,
(i) Amplitude of sound waves
(ii) Sensitivity of ear
(iii) Distance from the source of the sound and the listener.
First determine the net force. Let's say the downwards force is negative and the upwards force is positive.
Since the forces act in opposite directions, the net force would be:
400N - 600N = -200N
Since I said negative is downwards, this translates to the net force being 200N downwards.
Force = mass*acceleration
200N = 60kg * acceleration
acceleration = 3.33 m/s^2
<span>The combined
gas law has no official founder; it is simply the incorporation of the three
laws that was discovered. The combined gas law is a gas law that combines
Gay-Lussac’s Law, Boyle’s Law and Charle’s Law.
Boyle’s law states that pressure is inversely proportional with volume
at constant temperature. Charle’s law states that volume is directly
proportional with temperature at constant pressure. And Gay-Lussac’s law shows
that pressure is directly proportional with temperature at constant volume. The
combination of these laws known now as combined gas law gives the ratio between
the product of pressure-volume and the temperature of the system is constant.
Which gives PV/T=k(constant). When comparing a substance under different
conditions, the combined gas law becomes P1V1/T1 = P2V2/T2.</span>
Answer: D. Density of uranium within nuclear fuel rods is insufficient to become explosive
Explanation: Nuclear power plants use the same fuel as nuclear bombs, i.e. radioactive Uranium-235 isotope. However, in a nuclear power plant, the energy is released more slowly unlike in a nuclear bomb. <em>The energy released is through nuclear fission, and radioactive decay occurs at the same rate as in nuclear bombs. therefore, option A, B</em><em> </em><em>and C are incorrect.</em>
The primary reason why nuclear chain reactions within power plants do NOT produce bomb-like explosions is because the uranium fuel rods used in electricity generation is not sufficiently enriched in Uranium-235 to produce a nuclear detonation. This is the same idea in option D which is the correct option.
Answer:
The coefficient of kinetic friction between the puck and the ice is 0.11
Explanation:
Given;
initial speed, u = 9.3 m/s
sliding distance, S = 42 m
From equation of motion we determine the acceleration;
v² = u² + 2as
0 = (9.3)² + (2x42)a
- 84a = 86.49
a = -86.49/84
|a| = 1.0296
= ma
where;
Fk is the frictional force
μk is the coefficient of kinetic friction
N is the normal reaction = mg
μkmg = ma
μkg = a
μk = a/g
where;
g is the gravitational constant = 9.8 m/s²
μk = a/g
μk = 1.0296/9.8
μk = 0.11
Therefore, the coefficient of kinetic friction between the puck and the ice is 0.11