Most of the energy will be absorbed by the materials that make up the cars, causing them to deform. The energy will also be converted into sound energy, causing a loud bang upon collision. Also, some energy will be converted to thermal energy, which will cause the cars to heat up slightly.
Answer:
Explanation:
Electric forces exist among stationary electric charges; both electric and magnetic forces exist among moving electric charges. ... The magnetic force between two moving charges may be described as the effect exerted upon either charge by a magnetic field created by the other.
C. is correct. when you make a pizza, you see the the meat or pepperoni or cheese heating up and sometimes melted. (thats physical). on the inside the crust in heated and the toppings are cooked (chemical)
This question is based on the fundamental assumption of vector direction.
A vector is a physical quantity which has magnitude as well direction for its complete specification.
The magnitude of a physical quantity is simply a numerical number .Hence it can not be negative.
A negative vector is a vector which comes into existence when it is opposite to our assumed direction with respect to any other vector. For instance, the vector is taken positive if it is along + X axis and negative if it is along - X axis.
As per the first option it is given that a vector is negative if its magnitude is greater than 1. It is not correct as magnitude play no role in it.
The second option tells that the magnitude of the vector is less than 1. Magnitude can not be negative. So this is also wrong.
Third one tells that a vector is negative if its displacement is along north. It does not give any detail information about the negativity of a vector.
In a general sense we assume that vertically downward motion is negative and vertically upward is positive. In case of a falling object the motion is vertically downward. So the velocity of that object is negative .
So last option is partially correct as the vector can be negative depending on our choice of co-ordinate system.