The average velocity can be calculated using the formula:
v = d / t
For the 1st car, the velocity is calculated
as:
v1 = 8.60 m / 1.80 s = 4.78 m / s
While that of the 2nd car is:
v2 = 8.60 m / 1.66 s = 5.18 m / s
Now we can solve for the acceleration using the formula:
v2^2 = v1^2 + 2 a d
Rewriting in terms of a:
a = (v2^2 – v1^2) / 2 d
a = (5.18^2 – 4.78^2) / (2 * 8.6)
a = 0.23 m/s
Therefore the train has a constant acceleration of about
0.23 meters per second.
The Formula Bar is where data or formulas you enter into a worksheet appear for the active cell. The Formula Bar can also be used to edit data or formula in the active cell. The active cell displays the results of its formula while we see the formula itself in the Formula Bar.
mark me brainliestt :))
Answer:
A) The acceleration is zero
<em>B) The total distance is 112 m</em>
Explanation:
<u>Velocity vs Time Graph</u>
It shows the behavior of the velocity as time increases. If the velocity increases, then the acceleration is positive, if the velocity decreases, the acceleration is negative, and if the velocity is constant, then the acceleration is zero.
The graph shows a horizontal line between points A and B. It means the velocity didn't change in that interval. Thus the acceleration in that zone is zero.
A. To calculate the acceleration, we use the formula:

Let's pick the extremes of the region AB: (0,8) and (12,8). The acceleration is:

This confirms the previous conclusion.
B. The distance covered by the body can be calculated as the area behind the graph. Since the velocity behaves differently after t=12 s, we'll split the total area into a rectangle and a triangle.
Area of rectangle= base*height=12 s * 8 m/s = 96 m
Area of triangle= base*height/2 = 4 s * 8 m/s /2= 16 m
The total distance is: 96 m + 16 m = 112 m
The complete queston is The amount of a radioactive element A at time t is given by the formula
A(t) = A₀e^kt
Answer: A(t) =N e^( -1.2 X 10^-4t)
Explanation:
Given
Half life = 5730 years.
A(t) =A₀e ^kt
such that
A₀/ 2 =A₀e ^kt
Dividing both sides by A₀
1/2 = e ^kt
1/2 = e ^k(5730)
1/2 = e^5730K
In 1/2 = 5730K
k = 1n1/2 / 5730
k = 1n0.5 / 5730
K= -0.00012 = 1.2 X 10^-4
So that expressing N in terms of t, we have
A(t) =A₀e ^kt
A₀ = N
A(t) =N e^ -1.2 X 10^-4t
Answer: The balance of oxygen and carbondioxide is made due to respreration and photosinthesis. As we leave carbon dioxide and take in oxygen the ballance of carbon dioxide and oxygen is made. And during the photosinthesis of plants the balance of carbon dioxide and oxygen is made.