Answer:
Hybridization: sp
Electron geometry: linear
Molecular geometry: linear
Explanation:
H₃CCCH can also be written as its Lewis structure which is shown in the figure attached. The figure shows that the central carbon atom makes a single bond with CH₃ and a triple bond with CH. This means that the hybridization of the carbon is sp and both the electron and molecular geometry are linear with an 180° bond angle.
The amount of sample that is left after a certain period of time, given the half-life, h, can be calculated through the equation.
A(t) = A(o) (1/2)^(t/d)
where t is the certain period of time. Substituting the known values,
A(t) = (20 mg)(1/2)^(85.80/14.30)
Solving,
A(t) = 0.3125 mg
Hence, the answer is 0.3125 mg.
Units to measure pressure are as follows
atm - atmospheric pressure units
kPa - kilo Pascals
mm Hg - milimeters Hg
conversion units are;
1 atm = 101 325 Pa
therefore 4.30 atm = 101 325 Pa / atm x 4.30 atm = 435.7 Pa
1 atm = 760.0 mm Hg
4.30 atm = 760.0 mm Hg / atm x 4.30 atm = 3268 mm Hg
answers are 435.7 Pa and 3268 mm Hg
<span>63.4 g/mol
First, let's determine how many atoms per unit cell in face-centered cubic.
There is 8 corners, each of which has 1 atom, and each of those atoms is shared between 8 other unit cells. So 8*1/8 = 1 atom per unit cell. Additionally, there are 6 faces, each of which has 1 atom that's shared between 2 unit cells. So 6*1/2 = 3 atoms per unit cell. So each unit cell has the mass of 1+3 = 4 atoms.
Since there is 1000 liters per cubic meter, the mass per liter is 8920 kg/1000 = 8.920 kg/L. Now the mass per unit cell is 8920 g * 4.72x10^-26 = 4.21024x10^-22 g per unit cell. The mass per atom is 4.21024x10^-22 g / 4 = 1.05256x10^-22 g/atom, Finally, multiply by Avogadro's number, getting 1.05256x10^-22 g/atom * 6.0221409x10^23 atom/mol = 63.38664625704 g/mol.
Rounding to 3 significant digits gives 63.4 g/mol.</span>
B. Share Electrons.
Hope this helps.