It is natural and u can't by it
Explanation:
workdone = force x distance
force = mass x acceleration
30 x 10 = 300N
300N x 1m
workdone= 300J
<h3>Answer:</h3>
Limiting reactant is Lithium
<h3>
Explanation:</h3>
<u>We are given;</u>
- Mass of Lithium as 1.50 g
- Mass of nitrogen is 1.50 g
We are required to determine the rate limiting reagent.
- First, we write the balanced equation for the reaction
6Li(s) + N₂(g) → 2Li₃N
From the equation, 6 moles of Lithium reacts with 1 mole of nitrogen.
- Second, we determine moles of Lithium and nitrogen given.
Moles = Mass ÷ Molar mass
Moles of Lithium
Molar mass of Li = 6.941 g/mol
Moles of Li = 1.50 g ÷ 6.941 g/mol
= 0.216 moles
Moles of nitrogen gas
Molar mass of Nitrogen gas is 28.0 g/mol
Moles of nitrogen gas = 1.50 g ÷ 28.0 g/mol
= 0.054 moles
- According to the equation, 6 moles of Lithium reacts with 1 mole of nitrogen.
- Therefore, 0.216 moles of lithium will require 0.036 moles (0.216 moles ÷6) of nitrogen gas.
- On the other hand, 0.054 moles of nitrogen, would require 0.324 moles of Lithium.
Thus, Lithium is the limiting reagent while nitrogen is in excess.
Answer:
Strong acids. hope this helps :)
Balanced chemical equation is :
![N_2(g)+O_2(g)-->2NO(g)](https://tex.z-dn.net/?f=N_2%28g%29%2BO_2%28g%29--%3E2NO%28g%29)
It is given that the equation is in equilibrium.
We need to find what will happen if we add more
is added .
By Le Chatelier's principle :
Changing the concentration of a chemical will shift the equilibrium to the side that would counter that change in concentration.
It means production of the side where content is added will decrease and concentration on other side will increase .
So , more NO would form .
Therefore, option B. is correct.
Hence, this is the required solution.