1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MatroZZZ [7]
3 years ago
8

. A fire hose with an inside diameter of 6.40 cm is connected to a water hydrant very close to the ground. The other end is atta

ched to a nozzle with an inside diameter of 3.5 cm and is brought 8.0 m above the ground. The flow rate on the hose is 30.0 L/s. What is the pressure in the nozzle assuming the pressure inside the hose on the ground is 1.50 x 106 N/m2
Engineering
1 answer:
sashaice [31]3 years ago
5 0

Answer:

Solving

Explanation:

You might be interested in
Why is sssniperwolf so fine
RSB [31]
Bc she’s just a baddie
5 0
3 years ago
Read 2 more answers
(a)Compute the electrical conductivity of a cylindrical silicon specimen 7.0 mm (0.28 in.) diameter and 57 mm (2.25 in.) in leng
igor_vitrenko [27]

Answer:

a) \sigma = 12.2 (Ω-m)^{-1}

b) Resistance = 121.4 Ω

Explanation:

given data:

diameter is 7.0 mm

length 57 mm

current I = 0.25 A

voltage v = 24 v

distance between the probes is 45 mm

electrical conductivity is given as

\sigma = \frac{I l}{V \pi r^2}

\sigma  = \frac{0.25 \times 45\times 10^{-3}}{24 \pi [\frac{7 \times 10^{-3}}{2}]^2}

\sigma = 12.2(Ω-m)^{-1}[/tex]

b)

Resistance = \frac{l}{\sigma A}

                  = \frac{l}{ \sigma \pi r^2}

= \frac{57  \times 10^{-3}}{12.2 \times \pi [\frac{7 \times 10^{-3}}{2}]^2}

Resistance = 121.4 Ω

8 0
3 years ago
A 5-in.-diameter pipe is supported every 9 ft by a small frame consisting of two members asshown. Knowing that the combined weig
jarptica [38.1K]

Answer:

AC: at D , M_max = 12.25 lb-ft

BC: at E , M_max = 8.75 lb-ft

Explanation:

Given:

- The diameter of the pipe d = 5-in

- The pipe is supported every L = 9 ft of pipe in length

- The weight if the pipe + contents W = 10 lb/ft

Find:

determine the magnitude and location of the maximum bending moment in members AC and BC.

Solution:

- The figure (missing) is given in the attachment.

- We will first determine the external forces acting on each member:

             Section: 9-ft section of pipe.

                     Sum of forces perpendicular to member AC = 0

                     F_d - 0.8*W*L = 0

                     F_d = 0.8*10*9 = 72 lb

                     Sum of forces perpendicular to member BC = 0

                     F_e - 0.6*W*L = 0

                     F_e = 0.6*10*9 = 54 lb

              F_d = 72 lb ,  F_e = 54 lb

- Then we will determine the support reactions for each member AC point A and BC point B.

              Section: Entire Frame.

                    Sum of moments about point B = 0

                    -A_y*(18.75/12) + F_d*(d /2*12) + F_e*((11.25-2.5)/12) = 0

                    -A_y*(1.5625) + 15 + 39.375 = 0

                    A_y = 34.8 lb  

                   Sum of forces in vertical direction = 0

                     A_y + B_y - 0.8*F_d - 0.6*F_e = 0

                     B_y = 0.8*(72) + 0.6*(54) - 34.8

                     B_y = 55.2 lb  

                   Sum of forces in horizontal direction = 0

                     A_x + B_x - 0.6*F_d + 0.8*F_e = 0

                     A_x + B_x = 0

               Section: Member AC

                    Sum of moments about point C = 0

                     F_d*(2.5/12) - A_y*(12/12) - A_x*(9/12) = 0

                     72*2.5 - 34.8*12 - 9*A_x = 0

                     A_x = -237.6 / 9 = - 26.4 lb

                     B_x = - A_x = 26.4 lb

                     A_x = -26.4 lb  ,  B_x = 26.4 lb

- Now we will calculate bending moment for each member at different sections.

               Member AC:

                    From point A till just before point D

                     -0.6*A_x*x - A_y*0.8*x + M = 0

                     15.84*x - 27.84*x + M = 0

                      M = 12*x   ..... max value at D, x = 12.25 in

                      M_max = 12*12.25/12 = 12.25 lb-ft

               Member BC:

                    From point B till just before point E

                     -0.8*B_x*x + B_y*0.6*x + M = 0

                     -21.12*x + 33.12*x + M = 0

                      M = -12*x   ..... max value at E, x = 11.25 - 2.5 = 8.75 in

                      M_max = -12*8.75/12 = -8.75 lb-ft

- The maximum bending moments and their locations are:

                      AC: at D , M_max = 12.25 lb-ft

                      BC: at E , M_max = 8.75 lb-ft

5 0
3 years ago
Which of the following describes one of an employee's responsibilities under OSHA's rules?
kow [346]

Explanation:

what are the options for this question?

5 0
3 years ago
Read 2 more answers
Vai trò của chủ đầu tư
White raven [17]

Answer:

can't understand the writting

4 0
3 years ago
Read 2 more answers
Other questions:
  • Identify factors that can cause a process to become out of control. Give several examples of such factors.
    7·1 answer
  • 3. When starting an automatic transmission
    6·1 answer
  • Kinetic energy is defined as energy of an object in:
    6·2 answers
  • Write a matrix, that is a lower triangular matrix.
    15·1 answer
  • 3.94 x 105) + (2.04 x 105)
    6·1 answer
  • A cylinder fitted with a movable piston contains water at 3 MPa with 50% quality, at which point the volume is 20 L. The water n
    8·2 answers
  • The one end of a hollow square bar whose side is (10+N/100) in with (1+N/100) in thickness is under a tensile stress 102,500 psi
    8·1 answer
  • The hydrofoil boat has an A-36 steel propeller shaft that is 100 ft long. It is connected to an in-line diesel engine that deliv
    8·1 answer
  • Which of the following are true about the American Wire Gauge?
    9·1 answer
  • An American architect whose principles of building included consonance with the landscape was ____________________________.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!