<u></u>
has greater effect.
<u>Explanation</u>:

= Temperature of cold reservoir
= Temperature of hot reservoir
when
is decreased by 't',
= 

when
is increased by 'T'


Answer:
It creates airflow in the engine
Explanation:
Answer:
a. true
Explanation:
Firstly, we need to understand what takes places during the compression process in a quasi-equilibrium process. A quasi-equilibrium process is a process in during which the system remains very close to a state of equilibrium at all times. When a compression process is quasi-equilibrium, the work done during the compression is returned to the surroundings during expansion, no exchange of heat, and then the system and the surroundings return to their initial states. Thus a reversible process.
While for a non-quasi equilibrium process, it takes more work to move the piston against this high-pressure region.
A protective equipment which protects workers who are passing by from stray sparks or metal while another worker is welding is: E. Welding Screens.
A wielder refers to an individual who is saddled with responsibility of joining two or more metals together by wielding.
During the process of wielding, sparks and minute metallic objects are produced, which are usually hazardous to both the wielder and other workers within the vicinity.
Hence, the following protective equipment are meant to be worn or used directly by a wielder (worker) who is wielding:
However, a protective equipment which protects other workers who are passing by from stray sparks or metallic objects while wielder (worker) is welding is referred to as welding screens.
Find more information: brainly.com/question/15442363
Answer:
σ =5.39Mpa
Explanation:
step one:
The flexure strength is defined as the tendency with which unreinforced concrete yield to bending forces
Flexural strength test Flexural strength is calculated using the equation:
σ = FL/ (bd^2 )----------1
Where
σ = Flexural strength of concrete in Mpa
F= Failure load (in N).
L= Effective span of the beam
b= Breadth of the beam
step two:
Given data
F=40.45 kN= 40450N
b=0.15m
d=0.15m
L=0.45m
step three:
substituting into the expression we have
σ = 40450*0.45/ (0.15*0.15^2 )
σ =18202.5/ (0.15*0.15^2 )
σ =18202.5/ (0.15*0.0225 )
σ =18202.5/0.003375
σ =5393333.3
σ =5393333.3/1000000
σ =5.39Mpa
Therefore the flexure strength of the concrete is 5.39Mpa