Answer:
a) Total mass form, density and axis of rotation location are True
b) I = m r²
Explanation:
a) The moment of inertia is the inertia of the rotational movement is defined as
I = ∫ r² dm
Where r is the distance from the pivot point and m the difference in body mass
In general, mass is expressed through density
ρ = m / V
dm = ρ dV
From these two equations we can see that the moment of inertia depends on mass, density and distance
Let's examine the statements, the moment of inertia depends on
- Linear speed False
- Acceleration angular False
- Total mass form True
- density True
- axis of rotation location True
b) we calculate the moment of inertia of a particle
For a particle the mass is at a point whereby the integral is immediate, where the moment of inertia is
I = m r²
As we know the formula of kinetic energy is

here given that
KE = 150,000 J
mass = 120 kg
we can use this to find speed



So speed of above object is 50 m/s
Answer
given,
mass of ball, m = 57.5 g = 0.0575 kg
velocity of ball northward,v = 26.7 m/s
mass of racket, M = 331 g = 0.331 Kg
velocity of the ball after collision,v' = 29.5 m/s
a) momentum of ball before collision
P₁ = m v
P₁ = 0.0575 x 26.7
P₁ = 1.535 kg.m/s
b) momentum of ball after collision
P₂ = m v'
P₂ = 0.0575 x (-29.5)
P₂ = -1.696 kg.m/s
c) change in momentum
Δ P = P₂ - P₁
Δ P = -1.696 -1.535
Δ P = -3.231 kg.m/s
d) using conservation of momentum
initial speed of racket = 0 m/s
M u + m v = Mu' + m v
M x 0 + 0.0575 x 26.7 = 0.331 x u' + 0.0575 x (-29.5)
0.331 u' = 3.232
u' = 9.76 m/s
change in velocity of the racket is equal to 9.76 m/s