Answer:
Explanation:
class Pet:
def __init__(self):
self.name = ''
self.age = 0
def print_info(self):
print('Pet Information:')
print(' Name:', self.name)
print(' Age:', self.age)
class Dog(Pet):
def __init__(self):
Pet.__init__(self)
self.breed = ''
def main():
my_pet = Pet()
my_dog = Dog()
pet_name = input()
pet_age = int(input())
dog_name = input()
dog_age = int(input())
dog_breed = input()
my_pet.name = pet_name
my_pet.age = pet_age
my_pet.print_info()
my_dog.name = dog_name
my_dog.age = dog_age
my_dog.breed = dog_breed
my_dog.print_info()
print(' Breed:', my_dog.breed)
main()
Answer:
ICP -OES stand for inductively coupled plasma optical emission spectroscopy
Explanation:
It is techniques that known as trace level technique which help to identify and quantify the element present in sample by using spectra emission.
The analysis process include desolvates, ionization and excitation of the sample. The sample is identify by analyzing the emission line from it and quantify by analyzing the intensity of same emission lines.
Answer:
1. The magnetic flux line form a closed loop.
2. The magnetic flux line repel each other.
3. The magnetic flux line never intersect.
Answer:
(b)False
Explanation:
Given:
Prandtl number(Pr) =1000.
We know that 
Where
is the molecular diffusivity of momentum
is the molecular diffusivity of heat.
Prandtl number(Pr) can also be defined as

Where
is the hydrodynamic boundary layer thickness and
is the thermal boundary layer thickness.
So if Pr>1 then hydrodynamic boundary layer thickness will be greater than thermal boundary layer thickness.
In given question Pr>1 so hydrodynamic boundary layer thickness will be greater than thermal boundary layer thickness.
So hydrodynamic layer will be thicker than the thermal boundary layer.