Answer:
Answered below.
Explanation:
A) Both spheroidite & tempered martensite possess sphere - like cementite particles within their microstructure known as a ferrite matrix. However, the difference is that these particles are much larger for spheroidite than tempered.
B) Tempered martensite is much harder and stronger than spheroidite primarily because there is much more ferrite - cementite phase boundary area for its sphere - like cementite particles.
This is because the greater the boundary area, the more the hardness.
<h3>
Answer:</h3><h3><em>1. Ask questions</em></h3><h3><em>2. Thank the interviewer for their time </em></h3><h3>
Explanation:</h3>
1<em>. When the interviewer asked if you have any questions at the end of the interview don't say no. You should always say yes your interviewer is expecting you to ask a few good questions before ending the interview. </em>
<h3><em /></h3>
<em>2. Always thank the interviewer for their time and effort to interview you. This would look very good for you and its a nice way to help wrap up the interview. </em>
Answer:
Some of the internal strain energy is relieved.
There is some reduction in the number of dislocations.
The electrical conductivity is recovered to its precold-worked state.
The thermal conductivity is recovered to its precold-worked state
Explanation:
The process of the recovery of a cold-worked material happens at a very low temperature, this process involves the movement and annihilation of points where there are defects, also there is the annihilation and change in position of dislocation points which leads to forming of the subgrains and the subgrains boundaries such as tilt, twist low angle boundaries.
Answer:
(iv) second law of thermodynamics
Explanation:
The Clausius inequality expresses the second law of thermodynamics it applies to the real engine cycle.It is defined as the cycle integral of change in entropy of a reversible system is zero. It is nothing but mathematical form of second law of thermodynamics . It also states that for irreversible process the cyclic integral of change in entropy is less than zero