Answer:
False
Explanation:
The physical properties of melting point, boiling point, vapor pressure, evaporation, viscosity, surface tension, and solubility are related to the strength of attractive forces between molecules. These attractive forces are called Intermolecular Forces.
Explanation:
Most reagent forms are going to absorb water from the air; they're called "hygroscopic". Water presence can have a drastic impact on the experiment being performed For fact, it increases the reagent's molecular weight, meaning that anything involving a very specific molarity (the amount of molecules in the final solution) will not function properly.
Heating will help to eliminate water, although some chemicals don't react well to heat, so it shouldn't be used for all. A dessicated environment is simply a means to "dry." That allows the reagent with little water in the air to attach with.
The possible number and location of all subatomic are one of them is electrically neutral, while the other has a stable electronic configuration.
<h3>What are subatomic particles?</h3>
Subatomic particles are those particles that are present inside the atoms. They are electron, neutron, and proton. They are charged particles, protons are positively charged, electrons are negatively charged and neutrons are neutral.
The protons and electrons totally contribute to the atomic mass of the elements.
Thus, the subatomic particles are electrically neutral and stable to electronic configurations.
To learn more about subatomic particles, refer to the below link:
brainly.com/question/13303285
#SPJ1
Given the mass of
=25.6 g
The molar mass of
=390.35g/mol
Converting mass of
to moles:

Converting mol
to mol S:

Converting mol S to atoms of S using Avogadro's number:
1 mol = 

Answer:
Option D. 30 mL.
Explanation:
Step 1:
The balanced equation for the reaction. This is given below:
HNO3 + KOH —> KNO3 + H2O
From the balanced equation above,
The mole ratio of the acid, nA = 1
The mole ratio of the base, nB = 1
Step 2:
Data obtained from the question. This include the following:
Volume of base, KOH (Vb) =.?
Molarity of base, KOH (Mb) = 0.5M
Volume of acid, HNO3 (Va) = 10mL
Molarity of acid, HNO3 (Ma) = 1.5M
Step 3:
Determination of the volume of the base, KOH needed for the reaction. This can be obtained as follow:
MaVa / MbVb = nA/nB
1.5 x 10 / 0.5 x Vb = 1
Cross multiply
0.5 x Vb = 1.5 x 10
Divide both side by 0.5
Vb = (1.5 x 10) /0.5
Vb = 30mL
Therefore, the volume of the base, KOH needed for the reaction is 30mL.