The volume of 0. 250 mole sample of
gas occupy if it had a pressure of 1. 70 atm and a temperature of 35 °C is 3.71 L.
Calculation,
According to ideal gas equation which is known as ideal gas law,
PV =n RT
- P is the pressure of the hydrogen gas = 1.7 atm
- Vis the volume of the hydrogen gas = ?
- n is the number of the hydrogen gas = 0.25 mole
- R is the universal gas constant = 0.082 atm L/mole K
- T is the temperature of the sample = 35°C = 35 + 273 = 308 K
By putting all the values of the given data like pressure temperature universal gas constant and number of moles in equation (i) we get ,
1.7 atm×V = 0.25 mole ×0.082 × 208 K
V = 0.25 mole ×0.082atm L /mole K × 308 K /1.7 atm
V = 3.71 L
So, volume of the sample of the hydrogen gas occupy is 3.71 L.
learn more about ideal gas equation
brainly.com/question/4147359
#SPJ4
Number of moles : n₂ = 1.775 moles
<h3>Further explanation</h3>
Given
Moles = n₁ = 1.4
Volume = V₁=22.4 L
V₂=28.4 L
Required
Moles-n₂
Solution
Avogadro's hypothesis, at the same temperature and pressure, the ratio of gas volume will be equal to the ratio of gas moles
The ratio of gas volume will be equal to the ratio of gas moles

Input the values :
n₂ = (V₂ x n₁)/V₁
n₂ = (28.4 x 1.4)/22.4
n₂ = 1.775 moles
Answer:
energy from the sun that reaches earth
Answer:
A
Explanation:
Recall that Δ<em>H</em> is the sum of the heats of formation of the products minus the heat of formation of the reactants multiplied by their respective coefficients. That is:

Therefore, from the chemical equation, we have that:
![\displaystyle \begin{aligned} (-317\text{ kJ/mol}) = \left[\Delta H^\circ_f \text{ N$_2$H$_4$} + \Delta H^\circ_f \text{ H$_2$O} \right] -\left[3 \Delta H^\circ_f \text{ H$_2$}+\Delta H^\circ_f \text{ N$_2$O}\right] \end{aligned}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cbegin%7Baligned%7D%20%28-317%5Ctext%7B%20kJ%2Fmol%7D%29%20%3D%20%5Cleft%5B%5CDelta%20H%5E%5Ccirc_f%20%5Ctext%7B%20N%24_2%24H%24_4%24%7D%20%2B%20%20%5CDelta%20H%5E%5Ccirc_f%20%5Ctext%7B%20H%24_2%24O%7D%20%20%5Cright%5D%20%20%20-%5Cleft%5B3%20%5CDelta%20H%5E%5Ccirc_f%20%5Ctext%7B%20H%24_2%24%7D%2B%5CDelta%20H%5E%5Ccirc_f%20%5Ctext%7B%20N%24_2%24O%7D%5Cright%5D%20%5Cend%7Baligned%7D)
Remember that the heat of formation of pure elements (e.g. H₂) are zero. Substitute in known values and solve for hydrazine:
![\displaystyle \begin{aligned} (-317\text{ kJ/mol}) & = \left[ \Delta H^\circ _f \text{ N$_2$H$_4$} + (-285.8\text{ kJ/mol})\right] -\left[ 3(0) + (82.1\text{ kJ/mol})\right] \\ \\ \Delta H^\circ _f \text{ N$_2$H$_4$} & = (-317 + 285.8 + 82.1)\text{ kJ/mol} \\ \\ & = 50.9\text{ kJ/mol} \end{aligned}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cbegin%7Baligned%7D%20%28-317%5Ctext%7B%20kJ%2Fmol%7D%29%20%26%20%3D%20%5Cleft%5B%20%5CDelta%20H%5E%5Ccirc%20_f%20%5Ctext%7B%20N%24_2%24H%24_4%24%7D%20%2B%20%28-285.8%5Ctext%7B%20kJ%2Fmol%7D%29%5Cright%5D%20-%5Cleft%5B%203%280%29%20%2B%20%2882.1%5Ctext%7B%20kJ%2Fmol%7D%29%5Cright%5D%20%5C%5C%20%5C%5C%20%5CDelta%20H%5E%5Ccirc%20_f%20%5Ctext%7B%20N%24_2%24H%24_4%24%7D%20%26%20%3D%20%28-317%20%2B%20285.8%20%2B%2082.1%29%5Ctext%7B%20kJ%2Fmol%7D%20%5C%5C%20%5C%5C%20%26%20%3D%2050.9%5Ctext%7B%20kJ%2Fmol%7D%20%5Cend%7Baligned%7D)
In conclusion, our answer is A.