Answer:
x= 9.53 ounces
Explanation:
Given that
Mean ,μ= 9 ounces
Standard deviation ,σ=0.8 ounces
He wants to sell only those potatoes that are among the heaviest 25%.
P=25% = 0.25
When P= 0.25 then Z=0.674
Lest take x is the the minimum weight required to be brought to the farmer's market.
We know that
x = Z . σ + μ
x= 0.674 ₓ 0.8 + 9 ounces
x= 9.53 ounces
Answer:
the horizontal distance is 4.355 meters
Explanation:
The computation of the horizontal distance while travelling in the air is shown below:
Data provided in the question is as follows
Velocity = u = 7.70 m/s
H = 1.60 m
R = horizontal direction
Based on the above information
As we know that
R = u × time
where,
Time = 
So,
= 
= 4.355 meters
hence, the horizontal distance is 4.355 meters
An atom is made up of three different particles, which are proton, neutron and electron. The proton and the neutron are located in the nucleus of the atom and they make up mass of the atom. The electron orbit around the nucleus. The proton is positively charged while the electron is negatively charged, thus, for the atom to remain neutral, the number of proton and electron in an atom must be equal. The neutron has no charge.
The atomic mass of an element = number of proton + number of neutron
Atomic mass of magnesium= 24
Number of proton = 12
Therefore, number of neutron = 24 - 12 = 12.
Thus, the number of neutron = 12.
When paper burns, some of the chemical compounds in the
paper combine with oxygen in the air and become different
chemical compounds. That's a chemical change.
When iron rusts, or copper or silver turns green, that's the result
of the metal at the surface combining with the oxygen in the air and
forming a new chemical compound. Those are chemical changes.
When water evaporates, H₂O in the liquid phase gains thermal
energy and changes to H₂O in the gaseous phase. No chemical
compounds are lost, gained, or changed to other compounds.
It's just a physical change.
The car is the heaviest object there and mass is proportional to force, meaning the heavier it is the bigger the force should be in order to move it.