Answer:
an energy source (AC or DC), a conductor (wire), an electrical load (device), and at least one controller (switch).
Explanation:
mark as brainliest please
Answer:
b is the answer tennis ball
Answer: 2. Solution A attains a higher temperature.
Explanation: Specific heat simply means, that amount of heat which is when supplied to a unit mass of a substance will raise its temperature by 1°C.
In the given situation we have equal masses of two solutions A & B, out of which A has lower specific heat which means that a unit mass of solution A requires lesser energy to raise its temperature by 1°C than the solution B.
Since, the masses of both the solutions are same and equal heat is supplied to both, the proportional condition will follow.
<em>We have a formula for such condition,</em>
.....................................(1)
where:
= temperature difference
- c= specific heat of the body
<u>Proving mathematically:</u>
<em>According to the given conditions</em>
- we have equal masses of two solutions A & B, i.e.

- equal heat is supplied to both the solutions, i.e.

- specific heat of solution A,

- specific heat of solution B,

&
are the change in temperatures of the respective solutions.
Now, putting the above values


Which proves that solution A attains a higher temperature than solution B.
A parallel circuit exists when an electric charge flows in more than one path best describes it.
<h3>What is a Parallel circuit?</h3>
This type of circuit has branches in which the current divides and only part of it flows through any of the branch.
Parallel circuit having more than one branch therefore means that electric charge will flow in more than one path thereby making option A the most appropriate choice.
Read more about Parallel circuit here brainly.com/question/12069231
Answer:
Explanation:
Let the internal resistance be r .
Since in open circuit the volt is 1.55 V , this will be the source voltage .
Source voltage = 1.55
If external resistance be R .
1.55 / (R + r ) = .500
R + r = 3.1 ohm
So sum of internal resistance and external resistance will be 3.1 ohm.