Answer:
The volume of the submerged part of her body is 
Explanation:
Let's define the buoyant force acting on a submerged object.
In a submerged object acts a buoyant force which can be calculated as :
ρ.V.g
Where ''B'' is the buoyant force
Where ''ρ'' is the density of the fluid
Where ''V'' is the submerged volume of the object
Where ''g'' is the acceleration due to gravity
Because the girl is floating we can state that the weight of the girl is equal to the buoyant force.
We can write :
(I)
Where ''W'' is weight
⇒ If we consider ρ =
(water density) and
and replacing this values in the equation (I) ⇒


ρ.V.g = 610N
(II)
The force unit ''N'' (Newton) is defined as

Using this in the equation (II) :



We find that the volume of the submerged part of her body is 
Speed = (distance traveled) / (time to travel the distance).
Strange as it may seem, 'velocity' is completely different.
Velocity doesn't involve the total distance traveled at all.
Instead, 'velocity' is based on 'displacement' ... the distance
between the start-point and end-point, regardless of the route
taken to get there. So the displacement in driving once around
any closed path is zero, because you end up where you started.
Velocity =
(displacement during some time)
divided by
(time for the displacement)
AND the direction from the start-point to the end-point.
For the guy who drove 15 km to his destination in 10 min, and then
back to his starting point in 5 min, (assuming he returned by way of
the same 15-km route):
Speed = (15km + 15km) / (10min + 5min) = (30/15) (km/min)
= 2 km/min.
Velocity = (end location - start position) / (15 min) = Zero .
Answer:
Reflection is when light bounces off an object, while refraction is when light bends while passing through an object.
That is not true.
<span>According
to the law of conservation of mass, in a chemical reaction, the mass of
the reactants will always be the same as the mass of the products.</span>
Answer:
the mass of the box is 51.98 kg.
Explanation:
Given;
applied horizontal force, F = 450 N
coefficient of friction, μ = 0.795
constant velocity, v = 1.2 m/s
At constant velocity, the acceleration of the object is zero and the net force will be zero.
Therefore, the mass of the box is 51.98 kg.