Answer:
375 K
Explanation:
Using the experssion shown below as:

At vaporization point, the liquid and the gaseous phase is in the equilibrium.
Thus,

So,

Given that:

Also, 1 kJ = 10³ J
So,


So, temperature is :


<u>T= 375 K</u>
1. Two parallel normal faults form.
4. The hanging wall on the left slides down relative to the footwall.
5. The hanging wall on the right slides down relative to the footwall.
Moles = mass/molar mass
moles = 2.3
molar mass = 278
=> mass = moles*molar mass = 639.4g
17.93 grams of oxygen gas occupy 12.3L of space at 109.4 kPa and 15.4°C. Details about how to calculate mass can be found below.
<h3>How to calculate mass?</h3>
The mass of a given gas can be calculated by multiplying the number of moles of the substance by its molar mass.
However, the number of moles of the gas must be calculated first as follows:
PV = nRT
Where;
- P = pressure = 1.0796941atm
- V = volume = 12.3L
- n = number of moles
- T = temperature = 288.4K
- R = gas law constant = 0.0821 Latm/molK
1.079 × 12.3 = n × 0.0821 × 288.4
13.27 = 23.68n
n = 13.27/23.68
n = 0.56mol
Mass = 0.56 × 32
mass of oxygen gas = 17.93g
Therefore, 17.93 grams of oxygen gas occupy 12.3L of space at 109.4 kPa and 15.4°C.
Learn more about mass at: brainly.com/question/19694949
Answer:
the equator is closer to the sun