Answer:
It is A).
Explanation:
Silver (Ag) goes from the pure metal to Ag+ losing 1 electron so it is oxidised.
The hydrogen ion gains electrons and is reduced.
The molecules will be more separated, and will have least amount of intermolecular force of attraction.
<h3><u>Explanation:</u></h3>
The molecules inside the jar of Lilly are moving around each other. This means the state of the matter present inside the jar is liquid. As Lily gives more energy inside the jar , the molecules inside the jar will get more separated as the kinetic energy of the molecules increase and the intermolecular force of attraction decreases as well as the intermolecular separation or distance increase. As the energy is continued to be supplied from outside, there will be a time when this liquid will reaches boiling point and will start to change into gas. After this point the intermolecular force of attraction will be least among molecules and their separation will be maximum.
Answer:
4.6 × 10²³ molecules:
Step-by-step solution
You will need a balanced equation with masses, moles, and molar masses, so let's gather the information in one place:
M_r: 22.99
2Na + 2H₂O ⟶ 2NaOH + H₂
m/g: 35
1. Calculate the <em>moles of Na
</em>
Moles of Na = 35 g Na × (1 mol Na/22.99 g Na)
Moles of Na = 1.52 mol Na
2. Calculate the <em>moles of H₂
</em>
Moles of H₂ = 1.52 mol Na × (1 mol H₂/2 mol Na)
Moles of H₂= 0.761 mol H₂
3. Calculate the molecules of H₂
6.022 × 10²³ molecules H₂ = 1 mol H₂
Molecules of H₂ = 0.761 × (6.022 × 10²³
/1)
Molecules of H₂ = 4.6 × 10²³ molecules H₂
The reaction forms 4.6 × 10²³ molecules of H₂.
D = m / V
2.7 = 8.1 / V
V = 8.1 / 2.7
V = 3.0 mL