A calorimeter contains reactants and a substance to absorb the heat absorbed. The initial temperature (before the reaction) of the heat absorbent is measured and then the final temperature (after the reaction) is also measured. The absorbent's specific heat capacity and mass are also known. Given all of this data, the equation:
Q = mcΔT
To find the heat released.
Question 4: The first one
Question 5: The fourth one
Question 6: The first one
Question 7: The third one
<h2>Frequency</h2>
Explanation:
Wave frequency is the number of waves that pass a fixed point in a given amount of time.
Wave speed is the speed at which a wave travels.
Let the wave speed be 
Let the wave frequency be 
Let the wave length be 
The wave speed,frequency and wave length are related by the equation
.
When
increases,
increases on the other side to maintain equality when no other property is changing.
Answer:
Rate = k [OCl] [I]
Explanation:
OCI+r → or +CI
Experiment [OCI] M I(-M) Rate (M/s)2
1 3.48 x 10-3 5.05 x 10-3 1.34 x 10-3
2 3.48 x 10-3 1.01 x 10-2 2.68 x 10-3
3 6.97 x 10-3 5.05 x 10-3 2.68 x 10-3
4 6.97 x 10-3 1.01 x 10-2 5.36 x 10-3
The table above able shows how the rate of the reaction is affected by changes in concentrations of the reactants.
In experiments 1 and 3, the conc of iodine is constant, however the rate is doubled and so is the conc of OCl. This means that the reaction is in first order with OCl.
In experiments 3 and 4, the conc of OCl is constant, however the rate is doubled and so is the conc of lodine. This means that the reaction is in first order with I.
The rate law is given as;
Rate = k [OCl] [I]
Answer:
Liquid volume is usually measured using either a graduated cylinder or a buret. As the name implies, a graduated cylinder is a cylindrical glass or plastic tube sealed at one end, with a calibrated scale etched (or marked) on the outside wall.