Evaporation, distillation, filtration and chromatography
Hope it help you, have a nice day
Answer:
Electrons will flow from left to right through the wire.
Pb^2+ ions will be reduccd to Pb metal.
The concentration of Sn2+ ions in the left compartment will increase.
Explanation:
Looking at the relative electrode potentials of the two metals
Sn= -0.14
Pb=-0.13
Tin is expected to function as the anode (left hand half cell) and lead as the anode (right hand half cell) tin oxidizes to sn^2+ hence its concentration increases on the left compartment while lead is reduced to ordinary lead metal on the right hand half cell . since oxidation occurs on the left hand side, electrons flow from left to right.
Answer:
693K
Explanation:
The enthalpy change in the iron is 3690J
We now apply the formula for enthalpy change which is ΔH=mC∅ where ∅ is the temperature change, m the mass of the substance, and C the specific heat capacity for the substance.
ΔH in this case is 3690J.
Therefore 3690J=21.5g×0.449J/g.K×∅
as we are looking for ∅, we make it the subject of the formula.
∅=3690J/(21.5g×0.44J/g)
∅=390
Temperature=30°C +390
=420°+273
=693K
A combustion reaction of an will generally produce CO2 and H20 -- carbon dioxide and water and/or an oxide
looking at the combustion material C2H2, you know that the end products will be CO2 and H20, so the question is how much of each will you get
well, look at the total amount of carbon atoms, 2 C2, which means a total of 4 carbon atoms in this reaction, since only CO2 has carbon atoms, that means there must be 4 CO2 as an end product and 4 CO2 will use up 4 of 5 O2 molecule leaving only 1 O2 molecule for the H2 reaction.
now O2 has a total of 2 oxygen molecules whereas H20 has only a single oxygen molecule, hence the end product must have 2 H20
check that the H atoms balance out on both sides