Answer:
The answer to your question is 1.83 x 10²⁵ particles
Explanation:
Data
particles of H₂O = ?
mass of H₂O = 546 g
Process
1.- Calculate the molar mass of Water
Molar mass = (2 x 1) + (1 x 16)
= 2 + 16
= 18 g
2.- Use proportions to find the number of particles. Use Avogadro's number.
18 g ---------------- 6.023 x 10²³ particles
546 g --------------- x
x = (546 x 6.023 x 10²³) / 18
3.- Simplification
x = 3.289 x 10²⁶ / 18
4.- Result
x = 1.83 x 10²⁵ particles
The correct answer is option C, 5.02 x 10²² carbon atoms
Atomic mass of C = 12 g/mol
According to Avogadro, 1 mole of C has 6.023 x 10²³C atoms
Now 1 mole of C is equal to 12 g
Therefore, 12 g of C = 6.023 x 10²³ C atoms
1 g of C =
C atoms = 5.02 x 10²² C atoms
Answer:
Density, d = 1.779 g/cm³
Explanation:
The density of a material is given by its mass per unit volume.
Here, height of a piece of magnesium cylinder, h = 5.62 cm
Its diameter, d = 1.34 cm
Radius = 0.67 cm
Volume of he cylinder,


So, the density of the sample is 1.779 g/cm³.
Answer:
Ka = 4.76108
Explanation:
- CO(g) + 2H2(g) ↔ CH3OH(g)
∴ Keq = [CH3OH(g)] / [H2(g)]²[CO(g)]
[ ]initial change [ ]eq
CO(g) 0.27 M 0.27 - x 0.27 - x
H2(g) 0.49 M 0.49 - x 0.49 - x
CH3OH(g) 0 0 + x x = 0.11 M
replacing in Ka:
⇒ Ka = ( x ) / (0.49 - x)²(0.27 - x)
⇒ Ka = (0.11) / (0.49 - 0.11)² (0.27 - 0.11)
⇒ Ka = (0.11) / (0.38)²(0.16)
⇒ Ka = 4.76108
Answer:
Positron emission
Explanation:
Positron emission involves the conversion of a proton to a neutron. This process increases the mass number of the daughter nucleus by 1 while its atomic number remains the same. The new neutron increases the number of neutrons present in the daughter nucleus hence the process increases the N/P ratio.
A positron is usually ejected in the process together with an anti-neutrino to balance the spins.