Answer:
Answers are in the explanation.
Explanation:
<em>Given concentrations are:</em>
- <em>SO₂ = 0.20M O₂ = 0.60M SO₃ = 0.60M</em>
- <em>SO₂ = 0.14M O₂ = 0.10M SO₃ = 0.40M </em>
- <em>And SO₂ = 0.90M O₂ = 0.50M SO₃ = 0.10M</em>
<em />
In the reaction:
2SO₂(g) + O₂(g) ⇄ 2SO₃(g)
Kc is defined as:
Kc = 15 = [SO₃]² / [O₂] [SO₂]²
<em>Where concentrations of each species are equilbrium concentrations.</em>
<em />
Also, you can define Q (Reaction quotient) as:
Q = [SO₃]² / [O₂] [SO₂]²
<em>Where concentrations of each species are ACTUAL concentrations.</em>
<em />
If Q > Kc, the reaction will shift to the left until Q = Kc;
If Q < Kc, the reaction will shift to the right until Q = Kc
If Q = Kc, there is no net reaction because reaction would be en equilibrium.
Replacing with given concentrations:
- Q = [0.60M]² / [0.60M] [0.20M]² = 15; Q = Kc → No net reaction
- Q = [0.40M]² / [0.10M] [0.14M]² = 82; Q > Kc, → Reaction will shift to the left
- Q = [0.10M]² / [0.50M] [0.90M]² = 0.015; Q < Kc → Reaction will shift to the right
<em />
For a hydrogen atom, composed of an orbiting electron bound to a nucleus of one proton, an ionization energy of 2.18 × 10−18 joule (13.6 electron volts) is required to force the electron from its lowest energy level entirely out of the atom.
Answer:
Explanation:
stoichiometry is used in cooking because it helps you determine the amount or proportion of compounds you will need in a chemical reaction. Stoichiometry is present in daily life, even in the cooking recipes we make at home. The reactions depend on the compounds involved and how much of each compound is needed to determine the product that will result.
Fe: 2 x 55.845 = 111.69
O: 3 x 15.9994= 47.9982
111.69 + 47.9982 = 159.69 g/mol