Answer:

Explanation:
We know that the frequency of the nth harmonic is given by
, where
is the fundamental harmonic. Since we have the values of two consecutive frequencies, we can do:

Which for our values means (we do not need the value of <em>n</em>, that is, which harmonics are the frequencies given):

Now we turn to the formula for the vibration frequency of a string (for the fundamental harmonic):

So the tension is:

Which for our values is:

The period T of a pendulum is given by:

where L is the length of the pendulum while

is the gravitational acceleration.
In the pendulum of the problem, one complete vibration takes exactly 0.200 s, this means its period is

. Using this data, we can solve the previous formula to find L:
Answer:
Explanation:
The voltage of a disconnected charged capacitor increases when the plate area is decreased.
When plate area decreases , capacitance C decreases , but charge Q remains constant .
Q = C V where C is capacitance and V is voltage .
when C decreases , V increases for keeping Q constant .
So the statement is true.
The electric field is dependent on the charge density on the plates.
This statement is true .
The voltage of a connected charged capacitor remains the same when the plate area is decreased .
For a connected capacitor , V or voltage is constant which is equal to voltage of charging battery .
So the statement is true .
First figure out how many atoms you have with Avogadro's number. Since there are 63.5 grams/mol and you have 50.6 grams, you have (50.6/63.5)6.022E23=4.7986E23 atoms. Since there are 29 protons per atom, there are also 29 electrons per atom, so you should have a total of
29*4.7986E23=1.3916E25 electrons.
Since there is a positive charge you know some of these electrons are missing. How many are missing can be found by dividing the charge you have by the charge on the electron: 1.6E-6/1.6022E-19 = 9.98627E12 electrons are missing.
Now take the ratio of what is missing to what there should be:
9.98627E12/1.3916E25 = 7.1760873E-13
Speed = wavelength * Frequency
s = 247 /s * 1.4 m
s = 345.8 m/s
In short, Your Answer would be 345.8 m/s
Hope this helps!