Scopes, who has substituted for the regular biology teacher was charged on May the 5th, 1925 with teaching evolution from a chapter in George William Hunters textbook. Civic Biology: Presented in problems which described the theory of evolution... Hope this helps!
Answer:
Between 0 and 1 seconds (B)
Explanation:
The velocity of the car over time is represented by the line graphed here
the steeper the line, the greater change in velocity that occurred in a given time frame.
The steepest portion of the line is between 0-1 seconds, which means that the greatest rate of change occurred between 0-1 seconds.
(acceleration is the rate of change)
Answer:
176ft/s
Explanation:
Speed of a wave is a function of the frequency and wavelength of the wave. It is expressed mathematically as:
V = fλ where:
V is the speed of the wave
f is the frequency
λ is the wavelength
Given f = 16Hz, λ = 11ft
V = 16×11
V = 176ft/s
Answer:
894 electrons
Explanation:
The electrostatic force between the two charges is given by:

where we have
is the force
k is the Coulomb's constant
q1 = q2 =q is the magnitude of the charge on each sphere
r = 20.0 cm = 0.20 m is the distance between the two spheres
Substituting and solving for q, we find the charge on each sphere:

And since each electron has a charge of

the net charge on each sphere will be given by

where N is the number of excess electrons; solving for N,

Answer:
A λ = 97.23 nm
, B) λ = 486.2 nm
, C) λ = 53326 nm
Explanation:
With that problem let's use the Bohr model equation for the hydrogen atom
= -k e² /2a₀ 1/n²
For a transition between two states we have
-
= -k e² /2a₀ (1/
² - 1 / n₀²)
Now this energy is given by the Planck equation
E = h f
And the speed of light is
c = λ f
Let's replace
h c / λ = - k e² /2a₀ (1 /
² - 1 / no₀²)
1 / λ = - k e² /2a₀ hc (1 /
² -1 / n₀²)
Where the constants are the Rydberg constant
= 1.097 10⁷ m⁻¹
1 / λ =
(1 / n₀² - 1 / nf²)
Now we can substitute the given values
Part A
Initial state n₀ = 1 to the final state
= 4
1 / λ = 1.097 10⁷ (1/1 - 1/4²)
1 / λ = 1.0284 10⁷ m⁻¹
λ = 9.723 10⁻⁸ m
We reduce to nm
λ = 9.723 10⁻⁸ m (10⁹ nm / 1m)
λ = 97.23 nm
Part B
Initial state n₀ = 2 final state
= 4
1 / λ = 1.097 10⁷ (1/2² - 1/4²)
1 / λ = 0.2056 10⁻⁷ m
λ = 486.2 nm
Part C
Initial state n₀ = 3
1 / λ = 1,097 10⁷ (1/3² - 1/4²)
1 / λ = 5.3326 10⁵ m⁻¹
λ = 5.3326 10-5 m
λ = 53326 nm