Answer:
option D is correct
Explanation:
It is important to note that equipotential lines are always perpendicular to electric field lines. No work is required to move a charge along an equipotential, since ΔV = 0. Thus the work is :
W = −ΔPE = −qΔV = 0.
Work is zero if force is perpendicular to motion. Force is in the same direction as E, so that motion along an equipotential must be perpendicular to E. More precisely, work is related to the electric field by:
W = Fd cos θ = qEd cos θ = 0.
- The change in kinetic energy Δ K.E by conservation should be:
Δ K.E = W
Since, W = 0:
Δ K.E = 0
- If change in kinetic energy is zero it means that charge moves at a constant speed. Hence, option D is correct.
The answer is 48Kmh because it is 120km divided by 2.5 or 2 and a half hours
Answer:
The strength of the source charge's electric field could be measured by any other charge placed somewhere in its surroundings. The charge that is used to measure the electric field strength is referred to as a test charge since it is used to test the field strength. The test charge has a quantity of charge denoted by the symbol q.
Explanation:
Electric field strength is a vector quantity; it has both magnitude and direction. The magnitude of the electric field strength is defined in terms of how it is measured. Let's suppose that an electric charge can be denoted by the symbol Q. This electric charge creates an electric field; since Q is the source of the electric field, we will refer to it as the source charge. The strength of the source charge's electric field could be measured by any other charge placed somewhere in its surroundings. The charge that is used to measure the electric field strength is referred to as a test charge since it is used to test the field strength. The test charge has a quantity of charge denoted by the symbol q. When placed within the electric field, the test charge will experience an electric force - either attractive or repulsive. As is usually the case, this force will be denoted by the symbol F. The magnitude of the electric field is simply defined as the force per charge on the test charge.
Answer:
the answer should be D
Explanation:
Because if you want to earn your goals you must complete small goals to earn big goals