
= Joules ÷ (0.5×Kilograms)
14J ÷ 8.5 = 1.64705882
Remember, 1.64705882 = v², so we need to find the square root.
The square root of 1.64705882 is 1.283377894464448
Hope this helps!
Answer:
(2) The excess negative charge from the sphere spread out all over your body.
(7) After you touched it, the metal sphere was very nearly neutral.
Explanation:
Plastic pen repels magic tape so magic tape is also negatively charged . Further , magic tape repels small metal sphere that means small sphere also is negatively charged.
Now when small sphere is touched by a man insulated from ground , the charge is distributed between man and small sphere according to their capacitance .
Since human body will have greater capacitance ,it will acquire larger share of charge . Sphere being of very small size will retain very less charge and it will become almost neutral . Hence it will be attracted by charged tape .
The potential energy of the block is A) 490 J
Explanation:
The potential energy of an object is the energy possessed by the object due to its position in the gravitational field.
It is calculated as follows:

where
m is the mass of the object
g is the acceleration due to gravity
h is the height of the object above the ground
For the block in this problem, we have:
m = 10 kg

h = 5 m
Therefore, its potential energy is:

Learn more about potential energy:
brainly.com/question/1198647
brainly.com/question/10770261
#LearnwithBrainly
Answer:
C. 1500.
Explanation:
750 / .5 = 1500.
Hope this helps & best of luck!
Feel free to message me if you need more help! :)
Answer:
B. the force of friction of the road on the tires
Explanation:
Unless the car engine is like jet engine, the main force that accelerates the car forward is the force of friction of the road on the tires, which is ultimately driven by the force of engine on the tires shaft. As the engine, and the shaft are part of the system, their interaction is internal. According to Newton laws of motion, the acceleration needs external force, in this case it's the friction of the road on the tires.