Answer:
t = 0.029s
Explanation:
In order to calculate the interaction time at the moment of catching the ball, you take into account that the force exerted on an object is also given by the change, on time, of its linear momentum:
(1)
m: mass of the water balloon = 1.20kg
Δv: change in the speed of the balloon = v2 - v1
v2: final speed = 0m/s (the balloon stops in my hands)
v1: initial speed = 13.0m/s
Δt: interaction time = ?
The water balloon brakes if the force is more than 530N. You solve the equation (1) for Δt and replace the values of the other parameters:

The interaction time to avoid that the water balloon breaks is 0.029s
At STP, 1 mole of an ideal gas occupies a volume of about 22.4 L. So if <em>n</em> is the number of moles of this gas, then
<em>n</em> / (19.2 L) = (1 mole) / (22.4 L) ==> <em>n</em> = (19.2 L•mole) / (22.4 L) ≈ 0.857 mol
If the sample has a mass of 12.0 g, then its molecular weight is
(12.0 g) / <em>n</em> ≈ 14.0 g/mol
Infrared light
it is also found under the name IR lights. although it’s technically invisible, it can still be seen with machinery up to at least 1050 nm in experiments.
Answer:

Explanation:
From the question we are told that
Height of circular cylinder is 
Diameter of cylinder
Horizontal Force 

Generally the formula for shear modulus is mathematically represented by

Where







Answer:
Explanation:
Given ,
dv / dt = k ( 160 - v )
dv / ( 160 - v ) = kdt
ln ( 160 - v ) = kt + c , where c is a constant
when t = 0 , v = 0
Putting the values , we have
c = ln 160
ln ( 160 - v ) = kt + ln 160
ln ( 160 - v / 160 ) = kt
(160 - v ) / 160 = 
1 - v / 160 = 
v / 160 = 1 - 
v = 160 ( 1 -
)
differentiating ,
dv / dt = - 160k 
acceleration a = - 160k 
given when t = 0 , a = 280
280 = - 160 k
k = - 175
a = - 160 x - 175 
a = 28000 
when a = 128 t = ?
128 = 28000 
= .00457