It would depend on how she jumped off but based on it sounds it would be a curving motion
1) 29.4 N
The force of gravity between two objects is given by:

where
G is the gravitational constant
M and m are the masses of the two objects
r is the separation between the centres of mass of the two objects
In this problem, we have
(mass of the Earth)
(mass of the box)
(Earth's radius, which is also the distance between the centres of mass of the two objects, since the box is located at Earth's surface)
Substituting into the equation, we find F:

2) 
Let's now calculate the ratio F/m. We have:
F = 29.4 N
m = 3.0 kg
Subsituting, we find

This is called acceleration of gravity, and it is the acceleration at which every object falls near the Earth's surface. It is indicated with the symbol
.
We can prove that this is the acceleration of the object: in fact, according to Newton's second law,

where a is the acceleration of the object. Re-arranging,

which is exactly equal to the quantity we have calculated above.
Answer:
(a): The magnitude of the electric force on the small sphere = 
(b): Shown below.
Explanation:
<u>Given:</u>
- m = mass of the small sphere.
- q = charge on the small sphere.
- L = length of the silk fiber.
= surface charge density of the large vertical insulating sheet.
<h2>
(a):</h2>
When the dimensions of the sheet is much larger than the distance between the charge and the sheet, then, according to Gauss' law of electrostatics, the electric field experienced by the particle due to the sheet is given as:

<em>where,</em>
is the electrical permittivity of the free space.
The electric field at a point is defined as the amount of electric force experienced by a unit positive test charge, placed at that point. The magnitude electric field at a point and the magnitude of the electric force on a charge q placed at that point are related as:

Thus, the magnitude of the electric force on the small sphere is given by

The sheet and the small sphere both are positively charged, therefore, the electric force between these two is repulsive, which means, the direction of the electric force on the sphere is away from the sheet along the line which is perepndicular to the sheet and joining the sphere.
<h2>
(b):</h2>
When the sphere is in equilibrium, the tension in the fiber is given by the resultant of the weight of the sphere and the electric force experienced by it as shown in the figure attached below.
According to the fig.,

<em>where,</em>
= electric force on the sphere, acting along left.
= weight of the sphere, acting vertically downwards.
<em />

g is the acceleration due to gravity.