Answer:
v = 1.08 m/s
Explanation:
What is the linear speed of the 0.0500-kg sphere as its passes through its lowest point?
The decrease in PE is
d = 80.0cm * 1 / 1000m = 0.80m
h = 0.80 m /2 = 0.40 m
ΔPE = m*g*h
ΔPE = (0.0500 - 0.0200)kg * 9.8m/s² * 0.400 m
ΔPE = 0.1176 J
The moment of inertia of the assembly is
I = 1/12*m*L² + (m1 + m2)*(L/2)²
I = 1/12*0.390kg*(0.800m)² + 0.0700kg*(0.400m)²
I = 0.032 kg·m²
KE = ½Iω²
0.1176 J = ½ * 0.032kg·m² * ω²
ω = 2.71 rad/s
v = ωr = 2.71 rad/s * 0.400m
The linear velocity
v = 1.08 m/s
With Uranus at an average distance of 2.88 billion kilometres from the Sun and Neptune at an average distance of 4.5 billion kilometres it would be very easy to point out which of the gas giants is the coldest, but if you were you were to say that Neptune was the coldest, you’d be wrong.<span>Given that we expect planets further from the Sun to be colder than those closer, this does make Neptune and Uranus quite a mysterious pair. Uranus and Neptune are brimming with volatiles such as water, methane and ammonia and due to their composition in comparison to Jupiter and Saturn, which are comprised mainly of hydrogen and helium, are labelled the ice giants. Scientists have measured how hot Uranus and Neptune should be and have found that Uranus is very cold and very dim</span>
10.7 rad/s is the final angular velocity of the stick.
Given:
Mass of the stick = 4.42 kg
Length of the stick = 1.23m
Force of impulse (I) = 12.8 N s
The linear velocity of the stick, 


Therefore, the final linear velocity of the stick is 2.89 m/s
∴



Therefore, 10.7 rad/s is the final angular velocity of the stick.
Learn more about linear velocity here:
brainly.com/question/15154527
#SPJ4
The angular momentum of a rotation object is the product of its moment of inertia and its angular velocity:
L = Iω
L is the angular momentum, I is the moment of inertia, and ω is the angular velocity.
Apply the conservation of angular momentum. The total angular momentum before disks A and B are joined is:
L_{before} = (3.3)(6.6) + B(-9.3)
L_{before} = -9.3B+21.78
where B is the moment of inertia of disk B.
The total angular momentum after the disks are joined is:
L_{after} = (3.3+B)(-2.1)
L_{after} = -2.1B-6.93
L_{before} = L_{after}
-9.3B + 21.78 = -2.1B - 6.93
B = 4.0kg·m²
The moment of inertia of disk B is 4.0kg·m²
Answer:
Si tienen diferencia
Explanation: Internas: Proviene de la herencia; el legado genético que las personas reciben de sus padres.
Externa: Provienen de las experiencias personales frente
al mundo exterior