<h2>
Answer:</h2>
Temperature is 258.32°C
<h2>
Explanation:</h2>
Using the ideal gas equation;
PV = nRT --------------(i)
Where;
P = Pressure of the gas
V = Volume of the gas
n = number of moles of the gas
R = Gas constant = 8.31 J/mol · K
T = Temperature
<em><u>Given:</u></em>
mass of H₂ gas = 7.056 grams
Volume of the gas = 85L = 8.5 x 10⁻³m³
Pressure of the gas = 101.3kPa = 101.3 x 10³Pa = 1.013 x 10⁵Pa
<em><u>Steps:</u></em>
(i) Using the mass of the gas, calculate the number of moles using the relation:
n = m / M ----------------- (ii)
Where;
m = mass of H₂ = 7.056g
M = Molar mass of H₂ = 1g/mol
<em>Substitute these values into equation (ii) as follows:</em>
n = 7.056g / (1g/mol)
n = 7.056mol
(ii) Now calculate the temperature of the balloon by substituting the necessary values into equation (i)
(1.013 x 10⁵Pa)(8.5 x 10⁻³m³) = (7.056mol) (8.31 J/mol · K)(T)
T = (1.013 x 10⁵Pa)(8.5 x 10⁻³m³) ÷ (7.056mol) (8.31 J/mol · K)
<em>Solving the above gives</em>
T = 14.68K
<em>Convert this to Celsius </em>
T = 273 - 14.68
T = 258.32°C