Nuclear decay formula is N(t)=N₀*2^-(t/T), where N(t) is the amount of nuclear material in some moment t, N₀ is the original amount of nuclear material, t is time and T is the half life of the material, in this case carbon 14. In our case N(t)=12.5% of N₀ or N(t)=0.125*N₀, T=5730 years and we need to solve for t:
0.125*N₀=N₀*2^-(t/T), N₀ cancels out and we get:
0.125=2^-(t/T),
ln(0.125)=ln(2^-(t/T))
ln(0.125)=-(t/T)*ln(2), we divide by ln(2),
ln(0.125)/ln(2)=-t/T, multiply by T,
{ln(0.125)/ln(2)}*T=-t, divide by (-1) and plug in T=5730 years,
{ln(0.125)/[-ln(2)]}*5730=t
t=3*5730=17190 years.
The bone is t= 17190 years old.
KE = 1/2 mv^2
in this case, the initial kinetic energy which is converted to heat is
KE = 1/2 1400 (12)^2
KE = 100,800 J
Answer:
anions
Explanation:
The other are families of the periodic table.
An anion is a negatively charged ion.
Answer:
The manufacturer of a 9V dry-cell flashlight battery says that the battery will deliver 20 mA for 80 continuous hours. During that time the voltage will drop from 9V to 6V. Assume the drop in voltage is linear with time. How much energy does the battery deliver in this 80 h interval?
Explanation:
A positive or direct relationship is one in which the two variables (we will generally call them x and y) move together, that is, they either increase or decrease together. In a negative or indirect relationship, the two variables move in opposite directions, that is, as one increases, the other descremases