The molar mass of
is 86.02 g/mole
.
<h3><u>
Explanation:</u>
</h3>
The molar mass of a chemical compound is represented as the mass of a unit of that compound separated by the number of substances in that unit, measured in moles. The molar mass is a volume, not molecular, the property of a substance.
The molar mass is a percentage of various examples of the compound, which usually change in mass due to the appearance of isotopes.
From the below attached table, the Molar mass of
is 86.0108 g/mol.
answer:
as per the formula of given carbohydrate the answer is 15 moles
explanation:
- 1 mole carbohydrate contains 6 moles water
- 2.5 moles contain 6 X 2.5 = 15 moles
Answer:
0.120M is the concentration of the solution
Explanation:
<em>Assuming the mass of sodium nitrate dissolved was 2.552g</em>
<em />
Molar concentration is an unit of concentration widely used in chemsitry defined as the moles of solute (In this case NaNO3) in 1L of solution.
To find this question we must find the moles of NaNO3 in 2.552g. With this mass and the volume (250mL = 0.250L) we can find molar concentration as follows:
<em>Moles NaNO3 -Molar mass: 84.99g/mol-</em>
2.552g * (1mol / 84.99g) = 0.0300 moles NaNO3
<em>Molar concentration:</em>
0.0300 moles NaNO3 / 0.250L =
<h3>0.120M is the concentration of the solution</h3>
This is what a chromosome looks like during mataphase
Lunch of a patient has 3 oz skinless chicken, 3 oz of broccoli, 1 medium apple, and 1 cup of nonfat milk
Energy content of 3 oz skinless chicken is = 110 kcal
Energy content of 3 oz broccoli = 30 kcal
Energy content of 1 medium apple = 60 kcal
Energy content of 1 cup non-fat milk = 90 kcal
So the kilocalories of energy patient obtained from lunch
= 110 kcal+ 30 kcal + 60 kcal + 90 kcal = 290 kcal