Answer:
0.36 A.
Explanation:
We'll begin by calculating the equivalent resistance between 35 Ω and 20 Ω resistor. This is illustrated below:
Resistor 1 (R₁) = 35 Ω
Resistor 2 (R₂) = 20 Ω
Equivalent Resistance (Rₑq) =?
Since, the two resistors are in parallel connections, their equivalence can be obtained as follow:
Rₑq = (R₁ × R₂) / (R₁ + R₂)
Rₑq = (35 × 20) / (35 + 20)
Rₑq = 700 / 55
Rₑq = 12.73 Ω
Next, we shall determine the total resistance in the circuit. This can be obtained as follow:
Equivalent resistance between 35 Ω and 20 Ω (Rₑq) = 12.73 Ω
Resistor 3 (R₃) = 15 Ω
Total resistance (R) in the circuit =?
R = Rₑq + R₃ (they are in series connection)
R = 12.73 + 15
R = 27.73 Ω
Finally, we shall determine the current. This can be obtained as follow:
Total resistance (R) = 27.73 Ω
Voltage (V) = 10 V
Current (I) =?
V = IR
10 = I × 27.73
Divide both side by 27.73
I = 10 / 27.73
I = 0.36 A
Therefore, the current is 0.36 A.
Given Information:
KEa = 9520 eV
KEb = 7060 eV
Electric potential = Va = -55 V
Electric potential = Vb = +27 V
Required Information:
Charge of the particle = q = ?
Answer:
Charge of the particle = +4.8x10⁻¹⁸ C
Explanation:
From the law of conservation of energy, we have
ΔKE = -qΔV
KEb - KEa = -q(Vb - Va)
-q = KEb - KEa/Vb - Va
-q = 7060 - 9520/27 - (-55)
-q = 7060 - 9520/27 + 55
-q = -2460/82
minus sign cancels out
q = 2460/82
Convert eV into Joules by multiplying it with 1.60x10⁻¹⁹
q = 2460(1.60x10⁻¹⁹)/82
q = +4.8x10⁻¹⁸ C
Answer:
In the first law, an object will not change its motion unless a force acts on it. In the second law, the force on an object is equal to its mass times its acceleration. In the third law, when two objects interact, they apply forces to each other of equal magnitude and opposite direction.
Work-Energy :W = 1/2 m ( Vf^2 -Vo^2 )
Vo = 24.0 m/s Initial speed
Vf = 27.5 m/s Final speed
W = 1/2 m ( Vf^2 -Vo^2 )
160 kj = 1/ 2 m ( 27.5^2 -24.0 ^2)
160kj = 4680 x m
convert kilo joules to jeoules 160000 j = 4689 xm
m = 160000 j/4689
m = 34.18 kg