Answer:
36.2 K
Explanation:
Step 1: Given data
- Initial pressure of the gas (P₁): 8.6 atm
- Initial temperature of the gas (T₁): 38°C
- Final pressure of the gas (P₂): 1.0 atm (standard pressure)
- Final temperature of the gas (T₂): ?
Step 2: Convert T₁ to Kelvin
We will use the following expression.
K = °C +273.15
K = 38 °C +273.15 = 311 K
Step 3: Calculate T₂
We will use Gay Lussac's law.
P₁/T₁ = P₂/T₂
T₂ = P₂ × T₁/P₁
T₂ = 1.0 atm × 311 K/8.6 atm = 36.2 K
There are four Hydrogen atoms in one molecule of Methane (CH₄).
And there are 6.022×10²³ molecules in 1 mole of CH₄.
So,
Number of Hydrogen atoms is 1 mole of CH₄ are,
= 6.022 × 10²³ × 4
= 2.4 ×10²⁴ Hydrogen Atoms
Now calculating for 2 moles,
As,
1 mole of CH₄ contains = 2.4 ×10²⁴ Hydrogen Atom
Then,
2 moles of CH₄ will contain = X Hydrogen Atoms
Solving for X,
X = (2 moles × 2.4 ×10²⁴ Hydrogen Atom) ÷ 1 mole
X = 4.8 × 10²⁴ Hydrogen Atoms
Answer:
A. oxygen gas, liquid water, liquid honey, solid iron ore
Explanation:
Just did it on edge
Answer:
The mass of 42.3 moles of potassium sulfate is 7,371.1557 grams
Explanation:
Potassium sulfate K₂SO₄ which is also known as sulphate of potash is a water soluble common component of fertilizer
The molar mass of potassium sulfate, M = 174.259 g/mol
The given number of moles of potassium sulfate, n = 42.3 moles
The mass, 'm', of a given number of moles of potassium sulfate, 'n', is given as follows;
m = n × M
Therefore, we have;
The mass, 'm', of 42.3 moles of potassium sulfate is found by plugging in the values for 'M', and 'n', in the above equation as follows;
m = 42.3 moles × 174.259 g/mol = 7,371.1557 grams
The mass of 42.3 moles of potassium sulfate, m = 7,371.1557 grams.
<h3>
Answer:</h3>
0.3093 g of glucose are consumed each minute by the body.
<h3>
Explanation:</h3>
- During cellular respiration glucose is broken down in presence of oxygen to yield energy, water and carbon dioxide.
- The equation for the reaction taking place during cellular respiration is;
C₆H₁₂O₆ + 6O₂ → 6H₂O + 6CO₂
We are required to calculate the amount of glucose in grams;
<h3>Step 1: Calculate the moles of glucose broken down</h3>
From the equation, the mole ratio of glucose to Oxygen is 1 : 6
Moles of Oxygen in a minute is 1.03 × 10^-2 moles
Therefore, moles of glucose will be;
= (1.03 × 10^-2)÷6
= 1.717 × 10^-3 moles
<h3>Step 2: Mass of glucose </h3>
Mass is given by multiplying the number of moles with molar mass
mass = moles × molar mass
Molar mass glucose is 180.156 g/mol
Therefore;
Mass = 1.717 × 10^-3 × 180.156 g/mol
= 0.3093 g
Hence, 0.3093 g of glucose are consumed each minute by the body.