Answer:
Explanation:
C) What is the multiplicity of Proton-alpha's signal in this scenario when there are 2 identical protons "next door"?
Based on n+1 rule. Here n=2 (identical beta protons).
2+1=3
So the multiplicity of alpha proton is triplet, .
D) For molecules containing only single bonds (we'll discuss the influence of double bonds in a future lecture), what is the adjective that describes the position of protons that split a "next door neighbor's" signal?
The meaning of the adjective is this: the multiplicity of beta protons is singlet only (no spliting) in absence of alpha proton . But beta protons splits as doublet (n=1) in the presence of alpha proton,
E) How many bonds connect these "splitting next door neighbors"?
There are 3 bonds in between alpha and beta protons in a molecule.
F) What is the multiplicity of the Proton-betas' signal?
Following the n+1 rule, here n=1 (1 alpha proton) so 1+1=2. Hence it is a doublet.
Answer:
12.77 M
Explanation:
8.3 moles of NaCl in .65 L of water ? Looking for M ?
8.3 M / .65 L = 12.77 M
Answer:
The correct answer is -1085 KJ/mol
Explanation:
To calculate the formation enthalphy of a compound by knowing its lattice energy, you have to draw the Born-Haber cycle step by step until you obtain each element in its gaseous ions. Find attached the correspondent Born-Haber cycle.
In the cycle, Mg(s) is sublimated (ΔHsub= 150 KJ/mol) to Mg(g) and then atoms are ionizated twice (first ionization: ΔH1PI= 735 KJ/mol, second ionization= 1445 KJ/mol) to give the magnesium ions in gaseous state.
By other hand, the covalent bonds in F₂(g) are broken into 2 F(g) (Edis= 154 KJ/mol) and then they are ionizated to give the fluor ions in gaseous state 2 F⁻(g) (2 x ΔHafinity=-328 KJ/mol). The ions together form the solid by lattice energy (ΔElat=-2913 KJ/mol).
The formation enthalphy of MgF₂ is:
ΔHºf= ΔHsub + Edis + ΔH1PI + ΔH2PI + (2 x ΔHaffinity) + ΔElat
ΔHºf= 150 KJ/mol + 154 KJ/mol + 735 KJ/mol + 1445 KJ/mol + (2 x (-328 KJ/mol) + (-2913 KJ/mol).
ΔHºf= -1085 KJ/mol
Answer:
D
Excess solar radiation due to a missing magnetic field.
Explanation: Solar proton events (SPEs) are bursts of energetic protons accelerated by the Sun. They occur relatively rarely and can produce extremely high radiation levels. Without thick shielding, SPEs are sufficiently strong to cause acute radiation poisoning and death.
Hope this hels
plz mark brainliest