Explanation:
Let the volume of the solution be 100 ml.
As the volume of glycol = 50 = volume of water
Hence, the number of moles of glycol = 
= 
= 
= 0.894 mol
Hence, number of moles of water = 
= 2.77
As glycol is dissolved in water.
So, the molality = 
= 17.9
Therefore, the expected freezing point = 
= 
Thus, we can conclude that the expected freezing point is
.
Answer:
There are 23076 peanut M&M's in 53.768 kg of M&M's.
Explanation:
First we <u>convert 53.768 kg into g</u>:
- 53.768 kg * 1000 = 53768 g
Then we <u>divide the total mass of M&M's by the mass of one peanut M&M,</u> in order to calculate the answer:
So there are 23076 peanut M&M's in 53.768 kg of M&M's.
I would maybe say solid at higher temps
Explanation:
Due to the positive value of the change in temperature, this is an endothermic reaction.
Since the forward reaction is endothermic, increasing the temperature increases the equilibrium constant (k).
In an equilibrium system, the position of the equilibrium will move in a way to annul the change made to the system. An increase in temperature for an endothermic reaction would favour the reaction, leading to increase in amount of products and decrease in amount of reactants.
You convert kinetic energy into thermal energy when you rub two sticks together.