Is a function defined for a system relating several state variables or state quantities that depends only on the current equilibrium thermodynamic state of the system[1] (e.g. gas, liquid, solid, crystal, or emulsion), not the path which the system took to reach its present state. A state function describes the equilibrium state of a system, thus also describing the type of system. For example, a state function could describe an atom or molecule in a gaseous, liquid, or solid form; a heterogeneous or homogeneous mixture; and the amounts of energy required to create such systems or change them into a different equilibrium state.
Answer:
1 mol
Explanation:
Using the general gas law equation as follows:
PV = nRT
Where;
P = pressure (atm)
V = volume (L)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
T = temperature (K)
According to the provided information in the question;
V = 22.4L
T = 273K
P = 1 atm
R = 0.0821 Latm/molK
n = ?
Using PV = nRT
n = PV/RT
n = (1 × 22.4) ÷ (0.0821 × 273)
n = 22.4 ÷ 22.4
n = 1mol
Answer:
The Net reaction is
-

-

-
Explanation:
From the Question we are told that the buffers are
and 
When NaOH is added the Net ionic reaction would be
-

-

-
Answer:
2
Explanation:
The coefficient for O is 2 and this is an example of a combustion reaction. With the help of the coefficient 2 infront of oxygen, this equation now demonstrates law of conservation of mass.