Answer:
a.Attractive

Explanation:
When it comes to charges, the charges which are alike repel each other and the charges which are different will attract each other.
Here, there is a proton and electron which are different particles hence, they will attract each other.
= Charge of electron and proton = 
r = Distance between them = 997 nm
k = Coulomb constant = 
Force is given by

The force of attraction between the particles will be 
Answer:I'm gonna say mechanical or kinetic depending on how you look at it.
Explanation:
Answer:
A) The acceleration is zero
<em>B) The total distance is 112 m</em>
Explanation:
<u>Velocity vs Time Graph</u>
It shows the behavior of the velocity as time increases. If the velocity increases, then the acceleration is positive, if the velocity decreases, the acceleration is negative, and if the velocity is constant, then the acceleration is zero.
The graph shows a horizontal line between points A and B. It means the velocity didn't change in that interval. Thus the acceleration in that zone is zero.
A. To calculate the acceleration, we use the formula:

Let's pick the extremes of the region AB: (0,8) and (12,8). The acceleration is:

This confirms the previous conclusion.
B. The distance covered by the body can be calculated as the area behind the graph. Since the velocity behaves differently after t=12 s, we'll split the total area into a rectangle and a triangle.
Area of rectangle= base*height=12 s * 8 m/s = 96 m
Area of triangle= base*height/2 = 4 s * 8 m/s /2= 16 m
The total distance is: 96 m + 16 m = 112 m
Answer:
150 million kilometres
Explanation:
The astronomical unit (symbol: au, or AU or AU) is a unit of length, roughly the distance from Earth to the Sun and equal to 150 million kilometres (93 million miles) or 8.3 light minutes.
Answer:
the ball didnt hit my face so
Explanation: