The paths of the light waves that interfere cause first-order lines to differ in length by the wavelength of the light.
The phenomenon of wave interference occurs when two waves meet while traveling in the same medium.
As the two light waves interfere in the first order they interfere by differing the consecutive lengths by the wavelength of the light. The wavelength of the light can be defined as the distance between identical points (adjacent crests) in the adjacent cycles of a wave signal propagated in space or along a wire.
Hence, it can be concluded that the paths of the light waves that interfere cause first-order lines to differ in length by the wavelength of the light.
Learn more about waves here:
brainly.com/question/15663649
#SPJ10
The answer is actually true. i just took the test and i put false and it was wrong
You are exerting 100N. Since there’s no NET force, then there must be exactly 100N pushing exactly back on your 100N to cancel it to exactly zero. Newton's first law states that whether a body is at rest or travelling in a straight line at a constant speed, it will remain at rest or continue to move in a straight line at a constant speed unless acted upon by a force.
Ah ha ! Very interesting question.
Thought-provoking, even.
You have something that weighs 1 Newton, and you want to know
the situation in which the object would have the greatest mass.
Weight = (mass) x (local gravity)
Mass = (weight) / (local gravity)
Mass = (1 Newton) / (local gravity)
"Local gravity" is the denominator of the fraction, so the fraction
has its greatest value when 'local gravity' is smallest. This is the
clue that gives it away.
If somebody offers you 1 chunk of gold that weighs 1 Newton,
you say to him:
"Fine ! Great ! Golly gee, that's sure generous of you.
But before you start weighing the chunk to give me, I want you
to take your gold and your scale to Pluto, and weigh my chunk
there. And if you don't mind, be quick about it."
The local acceleration of gravity on Pluto is 0.62 m/s² ,
but on Earth, it's 9.81 m/s.
So if he weighs 1 Newton of gold for you on Pluto, its mass will be
1.613 kilograms, and it'll weigh 15.82 Newtons here on Earth.
That's almost 3.6 pounds of gold, worth over $57,000 !
It would be even better if you could convince him to weigh it on
Halley's Comet, or on any asteroid. Wherever he's willing to go
that has the smallest gravity. That's the place where the largest
mass weighs 1 Newton.
..... It would possibly she eenejjsjejeej 1.4