1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mrrafil [7]
3 years ago
13

Help me as quickly as possible

Chemistry
1 answer:
Flura [38]3 years ago
6 0

Answer: 6. Radiation

7. weather

8. Heat

9. Climate

Explanation:

You might be interested in
What does the term solar power mean?
Elenna [48]

Explanation:

Power obtained by harnessing the energy of the suns rays

5 0
3 years ago
THIS IS URGENT!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Pani-rosa [81]

Answer:

1- 1.54 mol.

2- 271.9 kPa.

3- Yes, the tires will burst.

4- 235.67 kPa.

5- As, the temperature increased, the no. of molecules that has minimum kinetic energy increases as shown in image 1 that represents the Maxwell’s Distribution of Speeds of molecules. "Kindly, see the explanation and the attached images".

<em>Explanation:</em>

<em>Q1- How many moles of nitrogen gas are in each tire?  </em>

  • To calculate the no. of moles of nitrogen gas in each tire, we can use the general law of ideal gas: PV = nRT.

where, P is the pressure of the nitrogen gas (P = 247.0 kPa/101.325 = 2.44 atm),

V is the volume of the nitrogen gas (V = 15.2 L),

n is the no. of moles of the nitrogen gas (n = ??? mole),

R is the general gas constant (R = 0.082 L.atm/mol.K),

T is the temperature of the nitrogen gas (T = 21°C + 273 = 294 K).

∴ n = PV/RT = (2.44 atm)(15.2 L)/(0.082 L/atm/mol.K)(294.0 K) = 1.54 mol.

<em>Q2: What would the maximum tire pressure be at 50 degrees C?  </em>

  • Now, the temperature is raised to be 50°C (T = 50°C + 273 = 323 K).
  • The pressure can be calculated using the general gas law: PV = nRT.

<em>∴ P = nRT/V </em>= (1.54 atm)(0.082 L/atm/mol.K)(323.0 K)/(15.2 L) = 2.68 atm = <em>271.9 kPa.</em>

<em>Q3: Will the tires burst in Moses Lake? Explain.</em>

  • <em>Yes,</em> the tires will burst because the internal pressure be 271.9 kPa that exceeds 270 kPa, the pressure above which the tires will burst.

<em>Q4: If you must let nitrogen gas out of the tire before you go, to what pressure must you reduce the tires before you start your trip? (Assume no significant change in tire volume.)  </em>

  • To get the pressure that we must begin with:
  • Firstly, we should calculate the no. of moles at:

T = 55°C + 273 = 328 K,

Pressure = 270 kPa (the pressure above which the tires will burst). (P =270 kPa/101.325 = 2.66 atm).

V = 15.2 L, as there is no significant change in tire volume.

∴ n = PV/RT = (2.66 atm)(15.2 L)/(0.082 L.atm/mol.K)(328 K) = 1.5 mol.

  • 1.5562 moles of N₂ in the tires will give a pressure of 270 kPa at 55°C, so this is the minimum moles of N₂ that will make the tires burst.
  • Now, we can enter this number of moles into the original starting conditions to tell us what pressure the tires will be at if we start with this number of moles of N₂.

P = ???  

V = 15.6 L.

n = 1.5 mol

T = 21°C + 273 = 294.0 K  

R = 0.0821 L.atm/mol.K.

∴ P = nRT/V = (1.5 mol x 0.082 x 294.0 K) / (15.6 L) = 2.2325 atm = 235.67 kPa.

<em>So, the starting pressure needs to be 235.67 kPa or just under in order for the tires not to burst.</em>

<em />

<em>Q5: Create a drawing of the tire and show a molecular view of the air molecules in the tire at 247 kpa vs the molecular view of the air molecules after the tires have been heated. Be mindful of the number of molecules that you use in your drawing in the before and after scenarios. Use a caption to describe the average kinetic energy of the molecules in both scenarios.</em>

<em />

  • As, the temperature increased, the no. of molecules that has minimum kinetic energy increases as shown in “image 1” that represents the Maxwell’s Distribution of Speeds of molecules.
  • The no. of molecules that possess a critical K.E. of molecules increases due to increasing the temperature activate the motion of molecules with high velocity as
  • (K.E. = 3RT/2), K.E. directly proportional to the temperature of the molecules (see image 2).
  • Also, the average speed of molecules increases as the K.E of the molecules increases (see image 3).

3 0
2 years ago
Write and balance the equation for the decomposition of aluminum chloride into its elements. phase symbols are optional.
lora16 [44]
The 3 and 2 to the right of the components are subscriptions.

7 0
2 years ago
Read 2 more answers
Which of these are ionic compounds? Check all that apply.
SIZIF [17.4K]
I think the correct answers from the choices listed above are the first, third and the last option. Ionic compounds are compounds that dissociates into ions when in aqueous solution. From the list, NH4Cl, KF and MgO are the ionic compounds. Hope this answers the question.
5 0
3 years ago
Read 2 more answers
To the nearest 0.5 mL, what is<br> the water volume in the<br> graduated cylinder?<br> mL?
AnnZ [28]

Answer:

14cm^3

Explanation:

6 0
2 years ago
Other questions:
  • Professor Williams wrote some statements on the board: 1. Newton observed an apple falling off a tree and speculated that all th
    5·2 answers
  • Charcoal (burned wood) that was used to make prehistoric drawings on cave walls in france was scraped off and analyzed. the resu
    8·1 answer
  • Which group of compounds is described as insoluble?
    15·2 answers
  • Can you please help me with this??
    8·1 answer
  • Which process is constructive?
    7·1 answer
  • Investigation: Cells are the basic unit of life.
    9·2 answers
  • Which ingredients produce the best bar for growth and repair?
    15·1 answer
  • What element is represented by the following orbital diagram?
    12·1 answer
  • Plssss help i am giving out a lot of points
    14·1 answer
  • The molar heat of vaporization for methane, CH4, is 8. 53 kJ/mol. How much energy is absorbed when 54. 8 g of methane vaporizes
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!