Answer:
the average force 11226 N
Explanation:
Let's analyze the problem we are asked for the average force, during the crash, we can find this from the impulse-momentum equation, but this equation needs the speeds and times of the crash that we could look for by kinematics.
Let's start looking for the stack speeds, it has a free fall, from rest (Vo=0)
Vf² = Vo² - 2gY
Vf² = 0 - 2 9.8 7.69 = 150.7
Vf = 12.3 m / s
This is the speed that the battery likes when it touches the beam. They also give us the distance it travels before stopping, let's calculate the time
Vf = Vo - g t
0 = Vo - g t
t = Vo / g
t = 12.3 / 9.8
t = 1.26 s
This is the time to stop
Now let's use the equation that relates the impulse to the amount of movement
I = Δp
F t = pf-po
The amount of final movement is zero because the system stops
F = - po / t
F = - mv / t
F = - 1150 12.3 / 1.26
F = -11226 N
This is the average force exerted by the stack on the vean
Answer: 117 kPa
Explanation:
For the liquid at depth 3 m, the gauge pressure is equal to = P₁=39 kPa
For the liquid at depth 9m, the gauge pressure is equal to= P₂
Now we are given the condition that the liquid is same. That must imply that the density must be same throughout the depth.
So, For finding gauge pressure we have formula P= ρ * g * h
Also gravity also remains same for both liquids
So taking ratio of their respective pressures we have
= 
So
= 
Or P₂= 39 * 3 = 117 kPa
Answer:
The formula is a = F m so in this case a = 5 10 = 0.5 m s 2
Explanation:
Answers:
1A) Al203
1B) SF6
2) Fe203 - iron oxide