1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zhannawk [14.2K]
3 years ago
12

Scoring Scheme: 3-3-2-1 Given the starting solution had a concentration of 1.25 M, how many moles of Co[H2O]6Cl2 were available

in the amount of starting solution you used
Chemistry
1 answer:
Pepsi [2]3 years ago
8 0

Answer:

The solution has 0.00994 moles of Co[H2O]6Cl2

Explanation:

Complete question: Given the starting solution had a concentration of 1.25 M, how many moles of Co[H2O]6Cl2 were available in the amount of starting solution you used?

mL= 7.95

Step 1: Data given

Concentration of the starting solution = 1.25 M

Starting solution = Co[H2O]6Cl2

Step 2: Calculate molar mass of Co[H2O]6Cl2

Atomic mass of Co = 58.93 g/mol

Atomic mass of H = 1.01 g/mol

Atomic mass of O = 16.00 g/mol

atomic mass of Cl = 35.45 g/mol

Molar mass of Co[H2O]6Cl2 =

1*58.93 + 12*1.01 + 6*16.00 + 2*35.45 = 237.95 g/mol

Step 3: Calculate number of moles

C = n/v

⇒with C = the Concentration of the starting solution = 1.25 M

⇒with n= the number of moles = to be determined

⇒with v = the volume = 7.95 mL = 0.00795 L

n = C * V

n = 1.25 M * 0.00795 L

n = 0.00994 moles

The solution has 0.00994 moles of Co[H2O]6Cl2

You might be interested in
ILL GIVE BRIANLIST
Nataly_w [17]
Incresing Pressure will increases the amount of gas dissolved !!

so your answer is B !!

Extra : Cool example is Pepsi or coke !! CO2 is dissolved by high pressure
4 0
3 years ago
Read 2 more answers
Please select the word from the list that best fits the definition
Alexandra [31]
I believe it is either A. or C. my guess is A.
7 0
3 years ago
For the following reactions, predict the products and write the balanced formula equation, complete ionic equation, and net ioni
stealth61 [152]

Answer:

.

Explanation:

To predict the products of these reactions we need to know the kind of reactions. All these reactions are double replacement reaction. In these kinds of reactions, the products will be the result of exchanging ions in the reactants. So, the first step is to identify the ions.  

For the reaction, we have Hg2(NO3)2 and CuSO4.  We have the ions Hg+1,  NO3-1,   Cu+2 and SO4-2  

The way to make this exchange is putting together positive in one species with the negative of the other species. Following that rule we have

Hg^{+1}  - - -  (SO_{4})^{-2}[/text]
the oxidation number will tell you the subscript for each species in the compound. In this case, is Hg2(SO4)  [tex]Cu^{+2} - - -  (NO_{3})^{-1}  - - ->  Cu(NO_{3})_{2} [/text]  
So, the products for this reaction will be
  [tex]Hg_{2} (NO_{3})_{2}(aq) + CuSO_{4}(aq)  -->  Hg_{2}SO_{4} + Cu(NO_{3})_{2}[/text]

After this, we proceed to balance the equation. For this, we check that we have the same number of each element on both sides of the equation. In this case, we can see that we have the same number, so the equation is balanced.  Finally, we check the rules of solubility to see if the species are soluble in water or not. In this case sulfates area always soluble except for mercury so Hg2(SO4) precipitates in the solution (pre). Nitrates are always soluble so Cu(NO3)2 is soluble (aq)  
[tex] Hg_{2}(NO_{3})_{2}(aq) + CuSO_{4}(aq)  - -> Hg_{2}SO_{4} (pre) + Cu(NO_{3})_{2}(aq)

The complete ionic equation allows to show which of the reactants or products exist primarily as ions.  For this reaction this will be:

2Hg^{+1}(aq)  + 2(NO_{3})^{-1}(aq) + (SO_{4})^{-2}(aq)  + Cu^{+2}(aq)    -->  Hg_{2}SO_{4} (pre)+ Cu^{+2}(aq)    + (NO_{3})^{-1}(aq) [/text]

To get net ionic equation we take away the ions that did not participate in the reactions. In other words the ones that are the same on both sides in the equation. In this case we see that [tex] Cu^{+2}(aq)   and  (NO_{3})^{-1}(aq) [/text] are the same on both sides so those ions are not include in the net ionic equation.  This is:
[tex] 2Hg^{+1}(aq)  + (SO_{4})^{-2}(aq)  -->  Hg_{2}SO_{4} (pre) [/text]

B [tex] Ni(NO_{3})_{2}(aq) + CaCl_{2}(aq)

ions (1) Ni^{+2}  and (NO_{3})^{-1}

ions (2) Ca^{+2} and Cl^{-1}

Exchanging  

Ni^{+2}  ---- Cl^{-1}  -->  NiCl_{2}  

Ca^{+2} ---  (NO_{3})^{-1}  -->  Ca(NO_{3})_{2}  

Products  

Ni(NO_{3})_{2}(aq) + CaCl_{2}(aq) -->  NiCl_{2}  + Ca(NO_{3})_{2}  

The equation is already balanced

Chlorides are always soluble except Ag+, TI+, Pb+2 and Hg2+2. NiCl2 is soluble (aq)

Nitrates are always soluble. Ca(NO3)2 is soluble (aq)  

Since both compounds are soluble, we can say that there is not reaction.

Complete ionic equation  

Ni^{+2}(aq) + 2(NO_{3})^{-1}  (aq) + Ca^{+2}(aq) + 2Cl^{-1}(aq) - - > Ni^{+2}(aq) + 2(NO_{3})^{-1}  (aq) + Ca^{+2}(aq) + 2Cl^{-1}(aq)

Net ionic equation:

The ions in both sides of the equation are the same so all of them are cancelled and we cannot get a net ionic equation this explains why there is no reaction in this case.  

C K_{2}CO_{3}(aq) + MgI_{2}(aq)

Ions(1) K^{+1}  and (CO_{3})^{-2}

Ions(2) Mg^{+2}  and l^{-1}

Exchanging  

K^{+1}  ---  l^{-1}  - - >  KI

Mg^{+2}  ---  (CO_{3})^{-2}  - - >  Ca(CO_{3})

Products  

K_{2}CO_{3}(aq) + MgI_{2}(aq) - ->   Kl + MgCO_{3}  

The equation is not balanced

Balance equation is  

K_{2}CO_{3}(aq) + MgI_{2}(aq) - ->  2Kl (aq) + MgCO_{3} (pre)  

iodides are always soluble except Ag+, TI+, Pb+2 and Hg2+2. KI is soluble (aq)

carbonates are always insoluble except group 1 cations. MgCO3 is insoluble (pre)

complete ionic equation  

2K^{+1}(aq)  + (CO_{3})^{-2}(aq)  + Mg^{+2}(aq)   + 2l^{-1}(aq)  - - > MgCO_{3} (pre) + 2K^{+1}(aq)  + 2l^{-1}(aq)  

Net ionic equation

(CO_{3})^{-2}(aq)  + Mg^{+2}(aq)  - - > MgCO_{3} (pre)  

D Na_{2}CrO_{4}(aq) + AlBr_{3}(aq)  

Ions(1) Na^{+1}  and (CrO_{4})^{-2}

Ions(2) Al^{+3} and Br^{-1}

Exchanging  

Na^{+1}  ---- Br^{-1} - ->  NaBr  

Al^{+3} ---  (CrO_{4})^{-2} - ->  Al_{2}(CrO_{4})_{3}

Products  

Na_{2}CrO_{4}(aq) + AlBr_{3}(aq) - ->  NaBr  + Al_{2}(CrO_{4})_{3}

The equation is not balanced

Balance equation is  

3Na_{2}CrO_{4}(aq) + 2AlBr_{3}(aq) - -> 6NaBr  + Al_{2}(CrO_{4})_{3}

bromides are always soluble except Ag+, TI+, Pb+2 and Hg2+2. NaBr is soluble (aq)

chromates are always insoluble except group 1 cations. Al2(CrO4)3 is insoluble  (pre)

3Na_{2}CrO_{4}(aq) + 2AlBr_{3}(aq) - ->  6NaBr(aq) + Al_{2}(CrO_{4})_{3}(pre)

Complete ionic equation

6Na^{+1}(aq)  + 3(CrO_{4})^{-2}(aq) + 2Al^{+3}(aq) + 6Br^{-1}(aq) - -> Al_{2}(CrO_{4})_{3}(pre) +6Br^{-1}(aq) +  6Na^{+1}(aq)  

Net ionic equation

3(CrO_{4})^{-2}(aq) + 2Al^{+3}(aq) - -> Al_{2}(CrO_{4})_{3}(pre)  

6 0
3 years ago
Get Organized! A Periodic Table WebQuest
netineya [11]
<h2>Answer:</h2>

What does Atomic number represents ___________.  

What does the Mass number represent ___________  

Periods are _____________ rows.  

Groups are _____________ columns.  

Total elements in periodic table are _____________.

5 0
4 years ago
This answer please :))
r-ruslan [8.4K]

Answer: ya this one

Explanation: this is the one

4 0
3 years ago
Other questions:
  • How many moles of water are In 44.99 grams
    12·1 answer
  • Phosphorus combines with oxygen to form two oxides. Find the empirical formula for each oxide of phosphorus if the percentage co
    11·1 answer
  • What is communities and what is predator-prey relationships ?
    8·1 answer
  • How does most of the water in the water cycle move from lakes and rivers directly back into the atmosphere?
    14·2 answers
  • what events and experiences lead bruno to gradually give up some of his innocence and see things differently
    7·1 answer
  • Which Lewis structure correctly represents an ionic bond between group 2 and group 7?
    12·1 answer
  • Give the formula of a reagent which will form a
    9·1 answer
  • Please help a brother out!
    5·1 answer
  • Carbon burns in the presence of oxygen to give carbon dioxide. Which chemical equation describes this reaction?
    14·1 answer
  • What are periods on the periodic table? How many are there?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!