We use the Rydberg Equation for this which is expressed as:
<span>1/ lambda = R [ 1/(n2)^2 - 1/(n1)^2]
</span>
where lambda is the wavelength, where n represents the final and initial states. Brackett series means that the initial orbit that electron was there is 4 and R is equal to 1.0979x10^7m<span>. Thus,
</span>
1/ lambda = R [ 1/(n2)^2 - 1/(n1)^2]
1/1.0979x10^7m = 1.0979x10^7m [ 1/(n2)^2 - 1/(4)^2]
Solving for n2, we obtain n=1.
Answer:
0.31 m
Explanation:
m = mass of the block = 1.5 kg
H = height from which the block is released on ramp = 0.81 m
k = spring constant of the spring = 250 N/m
x = maximum compression of the spring
using conservation of energy
Spring potential energy gained by spring = Potential energy lost by block
(0.5) k x² = mgH
(0.5) (250) x² = (1.5) (9.8) (0.81)
x = 0.31 m
Answer:
360 ÷ 4 = 90
Example
A 360° circle is cut into 4 peaces in the form of + or × . It's one side is called 90°
Answer:
(a) -472.305 J
(b) 1 m
Explanation:
(a)
Change in mechanical energy equals change in kinetic energy
Kinetic energy is given by
Initial kinetic energy is 
Since he finally comes to rest, final kinetic energy is zero because the final velocity is zero
Change in kinetic energy is given by final kinetic energy- initial kinetic energy hence
0-472.305 J=-472.305 J
(b)
From fundamental kinematic equation

Where v and u are final and initial velocities respectively, a is acceleration, s is distance
Making s the subject we obtain
but a=\mu g hence
