Answer:
Explanation:
Given that,
The mutual inductance of the two coils is
M = 300mH = 300 × 10^-3 H
M = 0.3 H
Current increase in the coil from 2.8A to 10A
∆I = I_2 - I_1 = 10 - 2.8
∆I = 7.2 A
Within the time 300ms
t = 300ms = 300 × 10^-3
t = 0.3s
Second Coil resistance
R_2 = 0.4 ohms
We want to find the current in the second coil,
The same induced EMF is in both coils, so let find the EMF,
From faradays law
ε = Mdi/dt
ε = M•∆I / ∆t
ε = 0.3 × 7.2 / 0.3
ε = 7.2 Volts
Now, this is the voltage across both coils,
Applying ohms law to the second coil, V=IR
ε = I_2•R_2
0.72 = I_2 • 0.4
I_2 = 0.72 / 0.4
I_2 = 1.8 Amps
The current in the second coil is 1.8A
I think atoms and molecules in matter are always in motion because of kinetic energy.
Answer: Load divided by it effort
Explanation:
Mechanical advantage of any machine is its load divided by its effort
Huh huh what? ¿Can’t you translate?
1. electrons
2. positive to negative
3. insulator
4. TRUE
5. closed circuit
6. TRUE
7. series
8. TRUE
9. v=ir
10. TRUE
Hope this helps! :)