Answer:
(NH4)3PO4 is 28.2 % N , 8.1% H, 20.8 % P and 43.0 % O by mass.
Explanation:
the formula In chemistry, the mass fraction of a substance within a mixture is the ratio w_{i} of the mass m_{i} of that substance to the total mass {\displaystyle m_{\text{tot}}} of the mixture. Expressed as a formula, the mass fraction is: {\displaystyle w_{i}={\frac {m_{i}}{m_{\text{tot}}}}.}
<span>The </span>abundance of a chemical element<span> is a measure of the </span>occurrence<span> of the </span>element<span> relative to all other elements in a given environment. Abundance is measured in one of three ways: by the </span>mass-fraction<span> (the same as weight fraction); by the </span>mole-fraction<span> (fraction of atoms by numerical count, or sometimes fraction of molecules in gases); or by the </span>volume-fraction<span>. Volume-fraction is a common abundance measure in mixed gases such as planetary atmospheres, and is similar in value to molecular mole-fraction for gas mixtures at relatively low densities and pressures, and </span>ideal gas<span> mixtures. Most abundance values in this article are given as mass-fractions.
</span>
Answer:
The pressure of the gas increased (if temperature remained constant).
The Boyle's law supports this observation.
Explanation:
The initial measurements of the gas are given as;
volume = 100 L
Pressure = 300 kpa
The second measurement is given as;
Volume = 75 L
The second reading implies that the volume of the gas has decreased. If the temperature of the gas remained constant, then the pressure must have increased according to the Boyle's law;
At constant temperature, the pressure of a given mass of an ideal gas is inversely proportional to its volume.
Answer: orientation , energy , frequency
Explanation:
According to the collision theory , the number of collisions that take place per unit volume of the reaction mixture is called collision frequency. The effective collisions are ones which result into the formation of products.
Effective collisions depends on the following two factors:-
1. Orientation factor: The colliding molecules must have proper orientation at the time of collision to result into formation of products.
2. Energy factor: For collision to be effective, the colliding molecules must have energy more than a particular value called as threshold energy.